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AbstrAct
Background We report a study of machine learning applied to the phenotyping of psychiatric diagnosis for research recruitment in youth depression, 
conducted with 861 labelled electronic medical records (EMRs) documents. A model was built that could accurately identify individuals who were 
suitable candidates for a study on youth depression.
Objective Our objective was a model to identify individuals who meet inclusion criteria as well as unsuitable patients who would require exclusion.
Methods Our methods included applying a system that coded the EMR documents by removing personally identifying information, using two 
psychiatrists who labelled a set of EMR documents (from which the 861 came), using a brute force search and training a deep neural network for this 
task.
Findings According to a cross-validation evaluation, we describe a model that had a specificity of 97% and a sensitivity of 45% and a second model 
with a specificity of 53% and a sensitivity of 89%. We combined these two models into a third one (sensitivity 93.5%; specificity 68%; positive predictive 
value (precision) 77%) to generate a list of most suitable candidates in support of research recruitment.
Conclusion Our efforts are meant to demonstrate the potential for this type of approach for patient recruitment purposes but it should be noted that a 
larger sample size is required to build a truly reliable recommendation system.
Clinical implications Future efforts will employ alternate neural network algorithms available and other machine learning methods.

BaCkgrOund
Recruitment of clinical research participants is routinely disappointing with 
traditional methods failing to identify up to 60% of possible participants.1 2 
Substantial institutional and departmental expense is incurred and little scien-
tific benefit is gained by low-enrolling studies, which made up 31% of the 
studies at one institution over a single year.3 Evidence indicates that dramatic 
increases, up to fourfold, in recruitment are possible with automated recruit-
ment.4 5 Such approaches are scalable in research settings—some research 
institutions have linked, with proper privacy safeguards in place, electronic 
medical records (EMRs) data together with genotype data for discovery in 
large-scale databases and virtual cohorts.6 EMR analysis has been suggested 
as a useful means of measuring outcomes and defining disorder subpopula-
tions.7

Research inclusion criteria in psychiatry often use diagnosis. Structured 
diagnosis codes are sometimes available in EMR clinical notes, but are 
frequently missing. Procedures such as natural language processing (NLP) and 
machine learning (ML) methods have been used to extract clinical information 
from EMRs’ unstructured text. The eMERGE group has used NLP extensively, 
with improved accuracy of their phenotyping algorithms8—examples include 
determining colorectal cancer screening status9 and diagnosing rheumatoid 
arthritis.10 NLP methods have also been applied to EMRs to boost the effi-
ciency of manual chart abstraction for breast cancer recurrence with 92% 
sensitivity and 96% sensitivity.11 More recently, NLP has been used to iden-
tify adverse drug events including extrapyramidal side effects in psychiatric 
patients12 and to phenotype children at risk for Kawasaki disease in emer-
gency department notes.13 In another investigation, ML classification algo-
rithms were used to identify rheumatoid arthritis patients with coronary artery 
disease—NLP was used to detect features in clinical notes and outperformed 
features selected by experts.14

In recent years, mental health researchers in South London and Maudsley 
NHS Trust have begun using EMRs for research recruitment.15 16 For pheno-
typing, a small number of studies have focused on extracting depression diag-
noses from unstructured EMR text. Early work on diabetes outpatient records 
compared diagnosis by coding versus by NLP—NLP improved detection of 

depression diagnosis by almost a third.17 Researchers developed and tested 
NLP in patients with a billing code of major depressive disorder to charac-
terise symptom remission and treatment resistance, and found that adding 
NLP resulted in higher area under receiver operating characteristic curve than 
billing data only (0.85–0.88 vs 0.54–0.55) for classification of mood state.18 
NLP has been used for categorisation of publicly available Twitter data into 
several mental health diagnoses, including depression and bipolar disorder.19 
A later publication identified patients with depression from free-text discharge 
summaries: a combination of NLP and ML algorithms was used, with the best 
performance coming from Medical Text Extraction, Reasoning and Mapping 
System’s20 knowledge-based decision tree method, yielding an F-measure of 
89.6%.21 To summarise the rationale for extracting diagnosis inclusion criteria 
from unstructured EMR using NLP and ML, it is known that research recruit-
ment supported by automation is more successful; further, that NLP and ML 
can be useful for information extraction from unstructured text notes, and that 
such methods have been applied with some degree of success to depres-
sion-related phenotypes.

Since structured diagnosis codes had limited availability in our EMR, 
we used NLP and ML on EMR notes data to extract our diagnostic inclu-
sion criteria, in this case Diagnostic and Statistical Manual of Mental Disor-
ders (DSM)-IV depression diagnoses, to support recruitment for a cogni-
tive-genomic study of youth depression. This article summarises the NLP and 
ML processes and results. The core purpose of this report is to present a 
model that identifies youth with a depression diagnosis and without specific 
exclusion comorbidities—a model evaluated via cross-validation and an inde-
pendent test data set, based on deep neural networks.

MethOds
deidentification
Clinical documents commonly contain sensitive information about individuals; 
accordingly, in this Research Ethics Board-approved study, we deidentified 
the corpus to remove personal identifying information (PII). For this task, we 
created a suite of programs that made use of the freely available Perl-based 
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software package De-id V.1.1.22 With these programs, we performed the 
following tasks:

 ► Inserted the necessary text tags at the beginning and end of each 
document so that it would be recognised by De-id

 ► Converted all the documents to. txt files so that the format conformed 
to the De-id specifications

 ► Looped the De-id algorithm over the whole document corpus to 
remove PII and thereby coded them

 ►  Translated the coded documents into. csv files to get them ready for 
the training and testing protocols of our supervised learning methods.

Clinical documents for youth psychiatric patients often contain important free-
text information regarding a patient’s lifestyle, activities and clinical impres-
sions, including diagnosis; however, often a discrete/structured diagnosis is 
missing. Our aim is to use NLP and ML to identify our phenotype of interest: 
youth patients ages 12–18 with DSM-IV defined Major Depressive Disorder or 
Dysthymic Disorder. Exclusion criteria included schizophrenia, bipolar disorder, 
autism, epilepsy, personality disorder, developmental delay and traumatic 
brain injury. From our EMR, we obtained a corpus consisting of 861 physi-
cian documents on 366 patients ages 12–18 years for a 6-month period, 
and deidentified them as noted above; the documents were predominantly 
progress notes, with character counts ranging from 533 to 24 803 (without 
spaces) and a median character count of ~4300. Almost all the child and 
adolescent patient population at the Centre for Addiction and Mental Health 
is outpatient in nature. Of the corpus, 60% of documents were on females.

This specific phenotyping effort requires a model that is capable of rejecting 
documents of individuals manifesting the exclusion criteria, but simultane-
ously requires a model capable of including suitable participants’ documents.

We used two distinct approaches for this task: (i) a brute force search 
method based on specific terms stored in dictionaries and (ii) an ML protocol 
known as neural networks.23 Both methods relied on NLP packages/
methods available through the R programming language: (wordnet, RKEA, 
tm, SDMTools). These methods take the EMR clinical document corpus and 
translate it into a structure that allows a machine to efficiently compute the 
frequency structure of the words used in each document; the term frequen-
cies are recorded in the Document Term Matrix (DTM) (see table 1).24 The 
NLP methods assure that only meaningful words are used by performing 
functions such as stripping grammatical articles from the text. For the neural 
network algorithms we present, the DTM (table 1) is the data that is being 
used by the brute force and neural network algorithms to find potential study 
participants.

The DTM records information about how often a word is encountered in a 
document but, in our case, it also includes information about how often it is 
found in the full document set. In table 1, each row represents a document 
from a patient, and the columns are words. We use the tf-idf computation 
(term frequency-inverse document frequency) which captures information 
about how often words show up in a document but it also adjusts for the 
effect of high-frequency words. A word such as ‘the’ or ‘diagnosis’ may add 
little information and their influence appropriately minimised. This approach 
allows our algorithms to focus on terms that ‘stand out’.

We used a supervised learning paradigm—we applied labels to the docu-
ments, for the algorithm to learn from, that is, suitable research participant 

candidates or not. To label a data set of EMR documents, two fully qualified 
psychiatrists (AR and JS) independently annotated 900 patient documents, 
which resulted in 861, after omitting 39 unclassifiable documents. Agreement 
between annotators was 98% based on 100 documents annotated by both 
psychiatrists. Of this set, there were 126 documents that were classified as 
belonging to patients that would meet the above inclusion criteria, and not 
meet any criteria for exclusion.

Brute force
The brute force method attempted to identify suitable participants by looking 
for certain keywords that would cause the machine to either reject or accept 
a particular document as belonging to a patient that would make a suitable 
participant. The method used a positive dictionary (PD) for inclusion criteria 
diagnoses and a negative dictionary (ND) for exclusion criteria diagnoses, 
along with a subalgorithm that looked at words that come before or after 
the specific PD or ND words. The words in the PD would increase a score of 
acceptance for an EMR and words in the ND would have the opposite effect. 
The subalgorithm that looked at the surrounding words would decide if the 
words in either the PD or ND should be negated, for example, ‘it is unlikely 
Samantha has major depressive disorder’ (box 1, 2).

neural networks
Neural networks have received more attention in recent years mainly due to 
advancements in methodology and access to affordable powerful computa-
tion platforms. The popularity of what are known as deep neural networks 
stems from their ability to robustly identify images.23 Advances in the last 
decade have been very impressive for image classification25 in addition 
to NLP.26 We decided to use the deep learning paradigm (DL) because of the 
expected non-linear relationships that exist between the language used within 
the EMRs and DL’s ability to learn several representations simultaneously for 
distinguishing between suitable participants and not. Deep neural networks 
encode information to make a prediction in a way that uses several layers of 
information by making non-linear inferences between the variables—in this 

table 1 Example of the Document Term Matrix data used to train our 
models 

Patient
Frequency of
‘responded’

Frequency of
‘responding’

Frequency of
‘response’

Frequency of
‘restless’

1 0 0 0.014249584 0.02089797
3 0 0 0 0.000758773

4 0 0.01683432 0 0

5 0.00742017 0 0 0

Each column provides a frequency measure for the given word. The most predictive 
words make their way into the neural network model.

Box 1 Positive dictionary: a dictionary of terms to help 
identify depression

 ► Major depressive disorder
 ► Major depression
 ► Double depression
 ► Dysthymic disorder
 ► Persistent depressive disorder
 ► Depressive disorder
 ► Depression
 ► MDD

Box 2 negative dictionary: terms that would indicate that 
someone is not suitable

 ► Bipolar disorder
 ► Schizophrenia
 ► Bipolar II
 ► Bipolar I
 ► Traumatic brain injury
 ► Developmental delay
 ► Personality disorder
 ► Borderline personality disorder
 ► Hypomanic
 ► Autism
 ► Epilepsy
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case the frequencies of used words and co-occurrences of used words. If 
the two groups of patients were linearly separable, then such a sophisticated 
method would not be necessary, and indeed, for a subset of patients this is 
true as some documents contain clear diagnoses. However, we are using 
our ability to move beyond a simple search, as was implemented in the brute 
force approach, via deep neural networks.

We used an R language implementation of the  H2O. ai package, which 
includes a multilayer, feedforward deep neural network for the purpose of 
prediction under a supervised protocol. For more details, please refer to H2O 
open-source software.25 We used the 861 documents as two main data sets 
of 758 and 103 documents, respectively: (i) a training data set consisted of 
758 documents, with 101 suitable participants and 657 unsuitable partici-
pants; and (ii) a test data set consisted of 103 documents with 25 of them 
belonging to suitable participants and 78 unsuitable participants. Our training 
phase resulted in two models that we shall refer to as DL1 and DL0: DL1 is 
capable of accurately identifying suitable participants but is poor at identifying 
unsuitable participants and DL0 has the opposite capabilities, as it is very 
accurate at correctly rejecting participants. Test statistics will be provided in 
the ‘Results’ section.

These two models were combined into a single protocol that takes patient 
documents as input and provides a list of patients for inclusion in our study. We 
shall refer to this model as DL1+0, which works by first passing a new group 
of patients to evaluate through DL1. The DL1+0 method will then provide 
a label for each patient by evaluating the corresponding document. At this 
stage DL1+0 will capture a good proportion of the true candidates but it will 
likely label many unsuitable candidates as suitable, so it then passes this new 
smaller list of documents through DL0, which then removes documents of 
patients that it deems to be unsuitable, thus ending up with a list of proposed 
true potential participants. See figure 1 for a synopsis of this process.

Findings
For information regarding De-id performance, please refer to Neamatullah and 
colleagues.22 We customised De-id for our purposes to include a larger set 
of proper nouns including names and regional institutional names for more 
optimal deidentification. The performance statistics presented here relate to 
individual documents, not patients.

The brute force method was capable of performing well on some data 
sets but it did not generalise well. On some independent test sets (training 
on 761 and testing on another 100 documents), we achieved the following: 
sensitivity=80%, specificity=88%, with a total proportion correct of 86%. 
However, this model performed poorly in general, that is, when evaluated via 
a cross-validation. More specifically, performance on some of the leave-out 
sets was poor with a sensitivity and specificity around 50% and thus not 
predictive at all.

We trained two neural networks (DL0 and DL1) and combined them to 
construct an aggregate predictor (DL1+0). We first report the topologies of 
the two component deep neural network models and then their independent 
performances, and finally, the performance of DL1+0.

DL0 was trained with 758 labelled documents: 657 documents that 
belonged to patients annotated as unsuitable and 101 that belonged to suit-
able patients. The input layer had 758 nodes (not related to the 758 docu-
ments; 758 is the number of input variables for DL0). The three hidden rectifier 
layers each have 200 nodes (we experimented with tanh layers and with 
several other topologies including a decreasing number of nodes, and more 
layers with no significant improvements), and the output layer used softmax 
so that there were two outputs, being a 0 or 1, that is, reject or accept. 
DL1’s input layer had 102 input nodes, but was trained with 100 0s and 101 
1s (figures 2, 3).

In order to evaluate our models, we used a fivefold cross-validation (perfor-
mance was stable over other cross-validations ranging from 5-fold to 20-fold), 
and we performed an independent data test set evaluation. Cross-validation 
is a standard practice, which theoretically determines how generalisable 
our models are—a protocol is used which leaves out a data set for testing, 
trains on the complement of the data and repeats this a number of times to 
generate statistics regarding sensitivity and specificity. The performance of 
each of these models is given in table 2 and table 3.

One can compute the specificity and sensitivity from the tables above. For 
DL0, the specificity is 97% and the sensitivity is 44.5%. In contrast for DL1, 
the specificity is 53% but the sensitivity is 89%. This means that we have one 
model that consistently performs well when classifying 0s and another model 
that performs well when classifying 1s. By experimenting with the topology 
of the neural network, it was possible to trade in a loss of specificity for DL0 
to gain some sensitivity. It is worth mentioning that a model similar to DL0, 
which we shall call DL0_2, was trained that performed quite well in general. 

Figure 1 The more sensitive DL1 method was initially applied. 
Following DL1, the more specific DL0 model was then used on the 
documents selected with DL1. DL, deep learning paradigm. Figure 2 A typical receiver operating characteristic (ROC) curve for 

DL0 models derived from a fivefold cross validation. The reason the area 
under the ROC (AUC) curve is relatively high compared with the AUC 
for DL1 is because there are a large number of true 0s captured by this 
model. DL, deep learning paradigm.

Figure 3 A typical receiver operating characteristic (ROC) curve for 
DL1 models derived from a fivefold cross-validation. The number of true 
0s and true 1s in the data set used to train DL1 is balanced and thus the 
area under the ROC curve is quite poor despite the fact that this model 
is excellent at predicting true 1s. DL, deep learning paradigm. 
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It had a specificity of 87% and a sensitivity of 75%. It was trained and tested 
on the same data as DL0 via a similar cross-validation process (refer Table 4).

As described, we used cross-validation to produce and tune a set of models 
that we combined into a set of DL1+0 models. For replication, we tested 
these models on a second, completely separate, independent test set of 103 
documents (which included 25 true candidates, ie, documents labelled as 1) 
that were not included with the original 758 documents mentioned above. 
The DL1+0 algorithm yields as output a set of documents that correspond 
to patients that it considers suitable participants; next we report on how it 
performed on the second independent test set of 103 documents.

 ► The sets of patients that DL1+0 identified as suitable participants 
ranged depending on the training of the neural networks. Many 
of the models generated returned predictions of 15 documents of 
which 13 were correct, giving a positive predictive value (precision) 
of 87%. Another set of models returned predictions for 22 out of 
the 25 possible suitable participants, 77% (ie, 17/22) of which 
were correctly identified as suitable, in terms of precision (positive 
predictive value). In practice, one could choose a model that 
would reveal many suitable candidates accurately, but that would 
miss many possible patients. Alternatively, one could use a model 
that returned more suitable candidates but it would include some 
patients that would not be suitable Table 5.

 ► An actual output example is given here for two of the these models:
 ► Input: 103 documents, 25 of which are annotated as suitable 

participants.
 ► Output of DL1+0 (called suitable by DL1+0) = (41,43,44,45

,46,47,48,55,56,57,58,60,62,66,67,70,72,73,74,75,77,99). Of 
these 22 documents, 62,66,67,75 and 77 were not annotated 
as suitable, which means that the output returned 17/22 (77%) 
correct calls.

 ► Output of DL1+0 (called suitable by DL1+0_short) = (41,4
4,45,47,48,57,58,60,62,70,72,74,77,99,102). Of these 15 
documents, 62 and 102 were not annotated as suitable, which 
means that 13/15 were correct calls.

 ► DL1+0 is excellent at rejecting patients correctly with a worst-case 
score of 90% specificity, which occurs when sensitivity is 68%.

 ► Though statistically this model appears very similar to the single-
shot neural network model DL0_2, the user can be more certain of 
the reliability of the output list of recommended patients due to an 
increase in precision (positive predictive value). After several tests, 
DL1+0 consistently returns lists that are more conservative but 
more precise than DL1, DL0 or DL0_2 alone.

disCussiOn
To summarise, we deidentified a corpus of EMR documents from a set of 
patients, annotated it using a set of inclusion and exclusion criteria, and used 
brute force and deep neural network approaches to phenotype potential 
research participants. Performance of the brute force method was incon-
sistent. We constructed a recommendation system by first training two 
deep neural networks, one that accurately recognises patients who are not 
suitable and another that accurately recognises patients who are suitable. 
We combined the two deep neural network models into a single model to 
augment a researcher’s ability to recruit suitable participants. By missing 
many potential participants, we have found that this algorithm can return 
document lists that are up to 87% accurate. This was validated on an inde-
pendent test set after tuning each component with a fivefold cross-validation 
protocol.

The current investigation has several limitations. The most important 
potential limitation is the phenotype itself: in the DSM-5 field trials, the kappa 
for Major Depressive Disorder was 0.28 for both adult and child versions.27 
Further, we were recently reminded that Major Depressive Disorder is an 
index of something and that we should not take an index of something as the 
thing itself.28 Psychiatric symptoms have successfully been extracted from 
EMR data on patients with serious mental illness,29 and this may be an alter-
native approach; to improve on a symptom-based phenotyping method, a 
network/complex dynamic system model may also be informative.30

We were not able to make use of structured diagnosis codes as are 
commonly available in most EMRs. It may be argued that discrete DSM or 
Systematized Nomenclature of Medicine (SNOMED) codes being available 
would render our deep neural network approach unnecessary; however, 
published evidence suggests that NLP/ML methods improve information 
extraction tasks in non-psychiatric phenotypes9 10 12 13 31 and depression.17 

18 21

The poor performance of the brute force method led us to abandon this 
approach. The suspected reason for this fluctuation in performance is based 
on the understanding that the content of the EMR documents could vary 
substantially. Some documents have clear diagnoses, while others have 
clear narrative, and then others would be too ambiguous for the brute force 
approach to capture reliable information. Improving the PD and ND may help, 
but if these terms are too comprehensive, it will limit the types of patients 
that are recommended. An immediate step to improve this approach would 
be to apply some Bayesian methods—probabilistic methods that can capture 
a distribution of responses and make the procedure more flexible to variation.

Several supervised ML techniques are available and we used feedfor-
ward deep neural networks trained directly on document term matrices. It 
is important to note that we attempted to use singular value decomposition 

table 2 Performance of DL0 considering a fivefold cross-validation 

Predicted 0s Predicted 1s

True 0s 639 18
True 1s 56 45

Sensitivity 44.5%; specificity 97%.

Note that it performs very well with rejecting unsuitable patients accurately, but it 
does not perform well with predicting suitable participants (the true 1s).

DL, deep learning paradigm.

table 3 Performance of DL1 considering a fivefold cross-validation 

Predicted 0s Predicted 1s

True 0s 47 53
True 1s 11 90

Sensitivity 89%; specificity 53%.

In contrast to model DL0, this model is excellent at accurately predicting 
participants (true 1s) but is poor at rejecting inappropriate patients.

DL, deep learning paradigm.

table 4 Performance of DL0_2 considering a fivefold cross-validation

Predicted 0s Predicted 1s

True 0s 570 87
True 1s 25 76

Sensitivity 75%; specificity 87%.

DL, deep learning paradigm.

table 5 Performance of DL1+0 considering a fivefold cross-
validation 

Predicted 0s Predicted 1s

True 0s 73 5
True 1s 8 17

Sensitivity 93.5%; specificity 68%; positive predictive value (precision) 77%.

At first it appears that there is not a significant improvement obtained via this model 
but the user can be more certain that the output recommended candidates are more 
reliable than DL1 or DL0 alone.

DL, deep learning paradigm.
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techniques to reduce noise but in our case it reduced the performance 
of our models. We should mention however that our algorithms already 
reduce noise by only considering words that occur above some threshold. 
Our modest sample size is the greatest contributor to the low sensitivity of 
our results. We used neural networks because we wished to experiment 
with a method that is truly generalisable for our task—our EMR documents 
are a heterogeneous and complex data set, representing several distinct 
psychiatric patient populations—a larger corpus may have yielded more 
accurate results. In total, there were 861 documents on 366 patients for 
the 6-month period. This limitation reminds us to treat this effort as a proof 
of concept. However, our models did replicate on a fully independent data 
set, suggesting our methods have some merit. In the future, we will use a 
larger training set in addition to a more powerful variant of neural networks 
known as recursive deep networks which have shown promise for natural 
language efforts.32 Future experiments will involve other ML techniques such 
as gradient boosting.33
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