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AbStrAct
Objective Meta-analysing studies with low event rates is challenging as some of the standard methods for meta-analysis are not well suited to 
handle rare outcomes. This is more evident when some studies have zero events in one or both treatment groups. In this article, we discuss why rare 
events require special attention in meta-analysis, we present an overview of some approaches suitable for meta-analysing rare events and we provide 
practical recommendations for their use.
Methods We go through several models suggested in the literature for performing a rare events meta-analysis, highlighting their respective 
advantages and limitations. We illustrate these models using a published example from mental health. We provide the software code needed to perform 
all analyses in the appendix.
results Different methods may give different results, and using a suboptimal approach may lead to erroneous conclusions. When data are very sparse, 
the choice between the available methods may have a large impact on the results. Methods that use the so-called continuity correction (eg, adding 0.5 
to the number of events and non-events in studies with zero events in one treatment group) may lead to biased estimates.
conclusions Researchers should define the primary analysis a priori, in order to avoid selective reporting. A sensitivity analysis using a range of 
methods should be used to assess the robustness of results. Suboptimal methods such as using a continuity correction should be avoided.

IntrOductIOn
When the outcome of interest is rare, for example, for the case of 
adverse events, individual studies are often underpowered to detect 
treatment effects. Pooling together evidence from multiple clinical 
trials via a meta-analysis offers a way to increase power.1 Performing 
such meta-analyses, however, might be a methodologically challenging 
task, especially when some of the studies reported no events in one or 
both treatment arms (we will refer to such studies as single-zero and 
double-zero studies, respectively). The issue of rare events is in itself 
quite frequent; an empirical study found that 30% of a random sample 
of 500 Cochrane reviews contained at least one trial with zero events 
in one arm.2 It is important to note at this point that there is no univer-
sally accepted definition of what constitutes a rare event. Probably most 
researchers would agree that a risk smaller than 1% would be enough 
to classify an event as rare. However, at the meta-analysis level, and 
depending on the size of the relevant studies, higher event rates might 
also lead to zero events if the sample sizes are sufficiently small. 

Meta-analysing rare events requires special attention because stan-
dard methods are not well suited for the task. Probably the most popular 
method for performing a meta-analysis is the inverse-variance method, 
either fixed effect or using the DerSimonian and Laird random effects 
model.3 4 This method involves calculating a treatment effect separately 
from each study, along with a standard error (SE). For binary outcomes the 
treatment effects are usually measured as odds ratios (ORs), risk ratios or 
risk differences. These study-specific estimates are then synthesised at 
a second level, across studies. An important aspect of the inverse-vari-
ance method is that it uses a normal approximation of the true binomial 
likelihood (the ‘large sample approximation’). This approximation does not 
work well when event rates are low, while for studies with no events in 
one or both arms, calculating treatment effects in terms of odds or risk 
ratios becomes impossible since it involves division by zero.

Consider for example the case of study i, which reported data in the 
form of the  2x2  table shown in table 1. The odds ratio  ORi  for this study 
can be calculated as  ORi = aidi

bici   and the corresponding SE, using the 

large sample approximation, is given by 
 
SEi =

√
1
ai

+ 1
bi

+ 1
ci

+ 1
di  

. It 
is easy to see that when no events are observed in one or both treat-
ment groups (ie, when  ai = 0  and/or  ci = 0 ) then the OR, the SE, or both 
cannot be calculated. The same problem is present when calculating risk 
ratios as well. Thus, when one or more of the entries of table 1 is zero, 

the inverse-variance method cannot be used. Note that the problem also 
appears when all patients had the event in one or both treatment groups 
(ie, when  bi = 0  and/or  di = 0 ). 

One easy way to overcome the zero-cell problem in single-zero 
studies is to ‘correct’ the data. This is done by adding a fixed value 
(typically 0.5) to all cells of table 1, for studies with zero events in 
one of their arms. This so-called ‘continuity correction’ bypasses the 
problem caused by zero events, and allows the use of the standard 
inverse-variance methods. Another simple solution to the problem is 
to completely forfeit the use of ORs and risk ratios, and only use risk 
difference to measure relative effects. This would work because the 
risk difference does not suffer from computational problems in the 
presence of zero events.

Unfortunately, both aforementioned solutions (applying a continuity 
correction or using the risk difference) have been found to be problematic 
for the meta-analysis of rare events.5 Simulations showed that using the 
inverse-variance method after applying a 0.5 continuity correction leads 
to excess bias in the estimated effects. In addition, it has been showed 
that when events are rare, risk difference methods have poor statistical 
properties (they provide too wide intervals and have low power), which 
makes them unsuitable for meta-analysis.5 

Double-zero studies are usually omitted from the meta-analysis (this is 
the default option for many statistical software). The Cochrane Handbook 
argues that such studies do not carry information regarding odds/risk 
ratios, and should therefore be excluded. Some researchers, however, 
pointed out that from an ethical point of view, patients in double-zero 
studies deserve to be included in the analyses,6 while others discuss that 
such studies may carry information of relative treatment effects through 
their sample size.7 

One additional issue with rare events is that, for the case of random 
effects meta-analysis, the estimation of the variance of random effects 
(heterogeneity) may be biased,8 which may lead to spuriously narrow 
confidence intervals (CIs).

table 1 Data provided by study i, in the form of a 2×2 table

Study i Events no events

Experimental a
i

b
i

Control c
i

d
i
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Thus, for the case of rare events meta-analysts need to resort to more 
advanced statistical methods. There are several alternatives that can be 
used to this end. In the Methods section of this paper we give a brief 
account of some of these methods. In the Results section we employ 
an example from a recent meta-analysis regarding mortality in antipsy-
chotics9 to illustrate the methods that will be discussed.

MEthOdS
In this section we go through some of the methods that have been 
proposed for the meta-analysis of rare events.

Peto’s method
Peto’s method10 can only be used to estimate ORs. It is by definition 
a fixed effects method, that is, it cannot account for heterogeneity 
between trials, which is one of the limitations of this model. Peto’s OR 
follows an approach similar to the inverse-variance model, but the effect 
estimate and the weight for each study are defined differently. The model 
incorporates evidence from single-zero studies without having to resort 
to continuity corrections. Double-zero studies are excluded from the anal-
ysis. Thus, the only instance when Peto’s method runs into computational 
problems is when all studies in the meta-analysis are double-zero, that is, 
when no events were observed in all studies. Simulations by Sweeting 
et al11 and Bradburn et al5 showed that the Peto’s OR works reasonably 
well when the event is rare (<1%), the treatment groups are balanced 
(ie, there is approximately the same number of patients in the treatment 
and control arms within each study) and the effects are not very large. If 
these conditions do not hold, Peto’s method may give biased results. For 
this reason, Cochrane does not recommend Peto as the default approach 
for rare events meta-analysis.1 

Mantel-haenszel meta-analysis
The Mantel-Haenszel (MH) method12 is a different approach to fixed effects 
meta-analysis. It can be used for ORs, risk ratios or risk differences, and it 
uses a different weighting scheme for each measure. The method incorpo-
rates evidence from single-zero studies without requiring continuity correc-
tions, unless the same cell of table 1 is zero for all studies (eg, when  ai = 0  
for all i). Thus, the method requires continuity corrections much less often. 
The MH method excludes from the analysis double-zero studies, unless risk 
difference is used. MH ORs have been shown to perform better than Peto’s 
method, in cases where the latter performed poorly (eg, when the treatment 
groups are unbalanced).5 Cochrane’s software for meta-analyses (RevMan) 
uses MH as the default fixed effect meta-analysis method. Note here that 
a random effects MH approach is also implemented in RevMan V.5. This 
however is not a ‘true’ MH model; it only uses the MH fixed effect pooled 
result to estimate the heterogeneity, and then uses a DerSimonian and 
Laird (inverse variance) random effects model. This means that this hybrid 
approach suffers from the usual problems that the inverse-variance method 
faces when events are rare.

using a ‘treatment-arm’ continuity correction
As we already discussed, a simple way to bypass the complications asso-
ciated with zero events is to add 0.5 to all cells of table 1 (ie, to  ai, bi, ci  
and  di ). This method, however, has been shown to perform poorly, that 
is, it may give extremely biased results, especially when groups are 
unbalanced.11 Sweeting et al11 tried to mitigate these undesirable effects 
by using non-fixed corrections. In their approach, the continuity correc-
tion is different for each treatment arm of each study, and is inversely 
related to the size of the treatment arm. After implementing this correc-
tion to the data, standard approaches can be used for meta-analysis (eg, 
inverse variance, MH). The authors showed that a non-fixed continuity 
correction is preferable to the usual 0.5.

However, the use of continuity corrections has been criticised, and it 
has been pointed out that this essentially arbitrary correction (0.5 or any 
other number) can affect the results of the meta-analysis.6 7 

Logistic regression
Logistic regression approaches use the correct binomial distribution of 
the data, and can be used to perform either a fixed or a random effects 
meta-analysis. In this approach, single-zero studies are included without 
any continuity correction, while double-zero studies are excluded from 
the analysis. One general caveat of logistic regression is that in order 
to perform a random effects meta-analysis it is required to estimate 
the extent of heterogeneity of treatment effects, and this might be very 
difficult when events are rare.8 Logistic regression (with unconditional 
binomial likelihood) has been shown to perform similarly with the MH 
OR without continuity correction.5 

bayesian meta-analysis
Bayesian statistics is a branch of statistics in which the notion of probability 
corresponds to the state of knowledge regarding a certain phenomenon,13 
rather than the expected frequency of an event (which corresponds to the 
so-called frequentist probability). Bayesian statistics are based in updating 
pre-existing evidence in the light of new data. In a Bayesian analysis, for 
each quantity of interest (eg, the treatment effects, or the extent of heter-
ogeneity in a meta-analysis) we assign a prior distribution. This distribution 
quantifies our prior knowledge regarding this quantity, along with some 
uncertainty. In practice, for some of the parameters of a model there might 
be no prior knowledge or we may wish our priors to have a minimal effect on 
the model’s estimates. In such cases we can use ‘uninformative’ (‘vague’) 
distributions for these parameters.

For a Bayesian meta-analysis one can use an adaptation of the simple 
logistic regression model.14 15 This requires specifying prior distributions 
for all model parameters. When data are sparse, the choice of prior distri-
butions can be very important. Even if a prior distribution is intended to 
be uninformative, it might have substantial impact on the results.16 This 
is especially true for the case of specifying priors for heterogeneity in a 
random effects meta-analysis.17 

This problem can be tackled by using reliable external information. For 
example, in a recent metaepidemiological study,18 19 Turner et al analysed 
data from 15 000 binary outcome meta-analyses from the Cochrane Data-
base of Systematic Reviews. The authors then used results to formulate 
informative prior distributions for the extent of between-study heterogeneity. 
These distributions cover 80 different settings with respect to the outcome 
being assessed, the nature of the interventions being compared, and so on. 
Such informative distributions can be used as priors for a random effects 
Bayesian meta-analysis, to overcome the problem of having ‘uninformative’ 
priors dominating results.

beta-binomial with correlated responses
The methods we have described up to this point (with the exception 
of the MH risk difference) exclude double-zero studies from the anal-
yses. Kuss performed a simulation study7 to compare several methods 
for meta-analysing rare events that do not exclude double-zero studies 
and do not use continuity corrections. Based on these simulations, Kuss 
concluded that a beta-binomial model with correlated responses may be 
the best approach to meta-analysing rare events in studies with balanced 
treatment groups. This approach models the probability of an event in 
each treatment group of each study using a binomial likelihood, and then 
pools this probability for each group across studies using a bivariate 
(‘Sarmanov’) beta distribution.20 The beta-binomial model can be used 
to estimate odds/risk ratios and risk differences, and is by definition a 
random effects model.
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Arcsine difference
Rücker et al21 proposed the use the arcsine difference for summarising treat-
ment effects. Their approach calculates the treatment effect from each study 
separately along with its SE. This is done using a measure called arcsine 
difference, which is a function of  ai, bi, ci  and  di  of table 1. The study-spe-
cific estimates of the arcsine difference are then combined using a standard 
fixed or random effects approach. The advantage of this approach is that 
it incorporates evidence from single-zero and double-zero studies without 
requiring a continuity correction. It can also provide an estimate even in the 
extreme case of having only double-zero studies in the meta-analysis, that 
is, when there was no event in any study. The major disadvantage of this 
method is that arcsine difference is very hard to interpret. Thus, this method 
has not been used in practice very often. It may however be valuable as a 
secondary analysis, to assess the robustness of results (eg, when another 
method has detected a treatment effect).

Other methods
Several other models have appeared in the literature and can be used for the 
meta-analysis of rare events, such as an exact method based on combining 
CIs,22 a bivariate binomial-normal model,16 a hypergeometric-normal 
model,16 a Poisson-gamma model23 and others. These methods have been 
rarely used in practice, and we will not consider them here in more detail.

Illustrative case study
In order to illustrate the methods that we discussed in this section, we 
used a set of previously published data regarding mortality risk in antip-
sychotics.9 This comprised two independent meta-analyses. The first one 
included 18 trials that compared long-acting injectable antipsychotics 
(LAI-AP) to placebo, for all-cause mortality. The event was very rare; the 
risk of death across both arms in all studies was around 0.2%. Only seven 
events were reported in the drug arms (total 3774 patients) and six events 
in the placebo arm (2145 patients). The available data are summarised 
in figure 1, where we also show the ORs and 95% CI from each study, 
calculated using the large sample approximation. In this figure, in order to 
calculate ORs in single-zero studies we used a 0.5 continuity correction, 
for illustration purposes. No ORs are shown for double-zero studies. The 
second meta-analysis compared LAI-AP with oral antipsychotics (OAP) 
for all-cause mortality. A total of 24 studies were included, reporting 15 

deaths in LAI-AP (4059 patients) and 24 deaths in OAP (3820 patients). 
The total risk of death across both arms was around 0.5%. Figure 2 shows 
the available data.

In the original publication,9 the authors performed both meta-analyses 
using the standard inverse-variance method, with a 0.5 continuity correc-
tion for single-zero studies. Here we reanalysed these data using a range 
of different methods. As we have already discussed, risk difference has 
been shown to perform poorly when it comes to meta-analysing rare 
events,5 and we did not consider it here. Moreover, when the probability 
of an event is low, the difference between risk ratios and ORs becomes 
negligible. Thus, we only focused on ORs—an analysis of risk ratios 
would give almost identical results. For the Bayesian random effects 
meta-analyses we used informative prior distributions for heterogeneity, 
based on the empirical study by Turner et al.19 For the first meta-analysis 
(LA-IAP vs placebo) we used the distribution corresponding to all-cause 
mortality, for pharmacological interventions versus placebo. For the 
second meta-analysis (LAI-AP vs OAP) we used the distribution corre-
sponding to all-cause mortality, for pharmacological versus pharmacolog-
ical interventions (table IV in ref 19). 

All analyses were performed using freely available software (R24 and 
OpenBUGS24). All software codes we used as well as some additional 
details regarding fitting the models are given in the online supplementary 
appendix.

rESuLtS
Table 2 summarises results from all analyses. It is evident that the choice 
of the method for meta-analysis is more important in the first example 
(LAI-AP vs placebo) as compared with the second (LAI-AP vs OAP). This 
is because events in the first data set were sparser. In fact, out of the 
18 studies of the LAI-AP versus placebo data set only one had events 
in both arms—the rest were either single-zero (nine studies) or double-
zero (eight studies). Conversely, in the second data set there were seven 
studies with events in both arms, eight single-zero and nine double-zero 
studies. This finding highlights a more general conclusion, that is, the 
sparser the data, the larger the impact of the choice of meta-analysis 
method.

Figure 1 Summary of the available studies for all-cause mortality, 
for long-acting injectable antipsychotics (LAI-AP) versus placebo. For 
illustration purposes, in order to calculate ORs and CIs in single-zero 
studies we have used a 0.5 continuity correction. For double-zero 
studies no effect is shown.  

Figure 2 Summary of the available studies for all-cause mortality, for 
long-acting injectable antipsychotics (LAI-AP) versus oral antipsychotics 
(OAP). For illustration purposes, in order to calculate ORs and CIs in 
single-zero studies we have used a 0.5 continuity correction. For double-
zero studies no effect is shown.
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If we focus on the first example we can easily see that using a conti-
nuity correction (either 0.5 as in the original paper, or the treatment-arm 
continuity correction11) leads to narrower CIs compared with other 
methods, that is, larger precision in the results. This should come as no 
surprise, as this method in essence imputes data in single-zero studies. 
Thus, this increase in precision is artificial. Moreover, it is obvious that 
different choices of the continuity correction lead to different results.

In the same example, the Peto’s method gives similar, but not identical 
results to MH with no continuity correction. A look at the data might 
convince us that Peto’s method is suboptimal for this particular example, 
as there are studies with large imbalances, for example, there are studies 
with 3:1 randomisation ratio.

The fixed effect Bayesian model gave almost identical results to the 
MH approach (without continuity correction). The effect of modelling 
random effects was rather minimal in both analyses, as the estimated 
value for heterogeneity was small (detailed results in the online supple-
mentary appendix).

The beta-binomial with correlated responses model failed to converge 
for the first example. This highlights one of the potential disadvantages 
of this model, as compared with the other approaches. For the second 
example it gave results comparable to the rest of the methods.

Finally, in table 2 we also show the results from the arcsine difference 
meta-analysis. It should be obvious that interpreting this effect measure 
in a clinically meaningful way can be very difficult.

dIScuSSIOn
Different methods for meta-analysing rare events may lead to different 
conclusions, and the sparser the data the larger the differences 
between the results of the alternative methods. This was highlighted in 
a much-publicised meta-analysis regarding the effects of rosiglitazone 
on the risk of myocardial infarction and death. The original meta-anal-
ysis25 gave results very close to the conventional threshold of ‘statis-
tical significance’ (ie, p<0.05). Subsequent meta-analyses of the same 
data set using alternative methods led to (slightly) different results than 

the original publication,23 26 which had an impact on the statistical signif-
icance of the findings.

This ambiguity stems from the fact that there is currently no clear 
answer as to which is the best model for meta-analysing rare events. 
Different models employ different assumptions, whose validity is usually 
difficult (or even impossible) to assess. Keeping that in mind, we highlight 
several general considerations that researchers can take into account 
when setting off to perform a meta-analysis of rare events:
1. The use of artificial continuity corrections should be avoided (with an 

exception perhaps for visualising evidence,7 eg, as we did in figures 1 
and 2).

2. Risk difference is usually not the optimal effect measure to use.
3. Peto’s method should not be employed when the three conditions 

needed are not met (event rates <1%, balanced groups, small treat-
ment effects). In such circumstances the MH ORs without continuity 
correction perform better than Peto.

4. The beta-binomial model has been shown in simulations to outper-
form other methods in some settings,7 but might suffer from issues 
regarding convergence of the model.

5. Bayesian meta-analysis with informative prior distributions is a good 
way to include random effects in the meta-analysis. This is because 
it overcomes the problem of estimating heterogeneity when events 
are sparse.

6. Results regarding relative effects (odds/risk ratios) should always be 
presented along with absolute incidence rates, to put results into 
context.27 A risk ratio of 1.5 might have very different clinical impli-
cations when the risk in the control group is 5% and when it is 0.1%.

7. Meta-analysts should avoid labelling results as statistically signifi-
cant or non-significant. The use of p value thresholds to dichotomise 
findings has recently attracted a lot of criticism.28 Particularly for the 
case of rare events meta-analysis, the use of arbitrary cut-points for 
p values (such as the usual 0.05 or any other threshold29) can be even 
more problematic, because results might be affected by the choice of 
model—as was the case in the rosiglitazone example.

Finally, researchers should predefine an analysis plan a priori (eg, at the 
protocol), to avoid selective use of methods. In addition, when events 
are rare, meta-analysts should always perform extensive sensitivity 
analyses using a range of alternative models, to ensure the robust-
ness of their results. When results are very sensitive to the choice of 
model researchers should be particularly cautious on how they present 
and interpret their findings. In such cases, results should be considered 
exploratory and hypothesis generating.27 
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