APPENDIX

A practical guide to the meta-analysis of rare events

Orestis Efthimiou

Institute of Social and Preventive Medicine, University of Bern, Switzerland.
Correspondence to oremiou@gmail.com

1 Software codes

1.1 Fitting models in R

In this section we provide the software codes needed to perform all frequentist analyses presented in the main paper. All comments are shown in blue font.

Start by installing needed libraries – this step is only needed once

```r
install.packages("meta")
install.packages("mmeta") # this library is needed for fitting the beta-binomial model
```

Call the libraries

```r
library("meta")
library("mmeta")
```

Load the dataset

#(the following dataset corresponds to LAI-AP vs placebo, see main paper)

```r
y1=c(1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 1, 0, 0, 0) #events, LAI-AP
y2=c(0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0) #events, placebo
n2=c(134, 172, 207, 40, 27, 0, 22, 98, 145, 170, 135, 204, 84, 127, 164, 164, 98, 119) #number of patients, placebo
```

#(the following dataset corresponds to LAI-AP vs OAP, see main paper)

```r
y1= c(0, 1, 0, 0, 2, 0, 0, 0, 1, 1, 0, 2, 0, 3, 0, 2, 1, 0, 0, 1, 0, 2, 0, 0) #events, LAI-AP
n1=c(265, 228, 27, 20, 55, 127, 23, 141, 264, 599, 230, 352, 25, 153, 319, 329, 153, 247, 179, 44, 20, 190, 43, 26) #number of patients, LAI-AP
y2= c(1, 1, 0, 0, 1, 1, 1, 2, 0, 0, 1, 0, 4, 1, 2, 0, 4, 1, 0, 0, 2, 0, 0) #events, OAP
```
n2= c(266, 227, 61, 24, 50, 132, 28, 142, 260, 322, 220, 363, 25, 152, 321, 382, 52,
300, 176, 41, 21, 192, 43, 20) # number of patients, OAP

Perform the analyses

inverse-variance odds-ratio with 0.5 continuity correction
OR.IV <- metabin(y1, n1, y2, n2, sm="OR", method = "Inverse", incr=0.5)
print(summary(OR.IV), digits=2)

inverse-variance odds-ratio with "treatment-arm" continuity correction
OR.IV2 <- metabin(y1, n1, y2, n2, sm="OR", method = "Inverse", incr="TACC")
print(summary(OR.IV2), digits=2)

Peto odds-ratio
MH.Peto <- metabin(y1, n1, y2, n2, sm="OR", method = "Peto")
print(summary(MH.Peto), digits=2)

Mantel-Haenszel odds-ratio with no continuity correction
MH.OR <- metabin(y1, n1, y2, n2, sm="OR", MH.exact=TRUE)
print(summary(MH.OR), digits=2)

Mantel-Haenszel odds-ratio with "treatment-arm" continuity correction
MH.OR1 <- metabin(y1, n1, y2, n2, sm="OR", MH.exact=F, incr="TACC")
print(summary(MH.OR1), digits=2)

Mantel-Haenszel odds-ratio with 0.5 continuity correction
MH.OR2 <- metabin(y1, n1, y2, n2, sm="OR", MH.exact=F, incr=0.5)
print(summary(MH.OR2), digits=2)

Mantel-Haenszel risk-difference with no continuity correction
MH.RD <- metabin(y1, n1, y2, n2, sm="RD", MH.exact=TRUE)
print(summary(MH.RD), digits=5)

Beta-binomial with correlated responses
study=c(1:length(y1))
B=data.frame(y1=y2,y2=y1,n1=n2,n2=n1)
B$studynames=study
Beta.Bin<- multipletables(data=B, measure="OR", model="Sarmanov", method="sampling",
nsam=1000)
summary(Beta.Bin)

Arcsine difference
ASD <- metabin(y1, n1, y2, n2, sm="ASD")
print(summary(ASD), digits=3)

Create the forest plot

forest(OR2, label.right = "favors LAI-AP", label.left = "favors OAP",
overall=T, squaresize = 0)
1.2 Fitting models in OpenBUGS

All results of the Bayesian analyses presented in the paper pertain to 1,000,000 iterations, after an initial 200,000 burn-in period and a thinning of 50. For the case of random effects meta-analyses, the median posterior estimates for the variance of the random effects (i.e. the heterogeneity variance, τ^2) were 0.02 (95% Credible Interval [0.002; 0.32]) for the meta-analysis of LAI-AP vs placebo, and 0.01[0.001; 0.19] for the meta-analysis of LAI-AP vs OAP.

Here we provide the codes we used.

1.2.1 Fixed-effects meta-analysis

```
model{
  for (i in 1:NS){  ### i cycles through the number of studies
    events.control[i]~dbin(p.control[i],total.control[i])
    events.treat[i]~dbin(p.treat[i],total.treat[i])
    logit(p.control[i]) <- u[i]  
    logit(p.treat[i]) <- u[i]+lor
    u[i] ~dnorm(0,0.001)  ### prior distribution for the log odds at the control
  }
  lor~dnorm(0,0.001) ### prior distribution for the log odds ratio
  or<-exp(lor)
}
```

Data for the LAI-AP vs OAP example

```
list(
  NS=24,
  events.treat=c(0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 3, 0, 2, 1, 0,
                 0, 2, 0, 0),
  total.treat=c(265, 228, 27, 20, 55, 127, 23, 141, 264, 599, 230, 352, 25,
                153, 319, 329, 153, 247, 179, 44, 20, 190, 43, 26),
  events.control=c(1, 1, 0, 0, 0, 1, 1, 2, 0, 1, 0, 4, 1, 2, 0, 6, 1, 0,
                   0, 2, 0, 0),
  total.control=c(266, 227, 61, 24, 50, 132, 28, 142, 260, 322, 220, 363, 25,
                152, 321, 382, 52, 300, 176, 41, 21, 192, 43, 20))
```

A set of initial values for the parameters may be needed, e.g.:

```
list(lor = 1.361,u = c(2.624,-5.582,-11.65,-14.04,-3.656, -8.944,-4.384,0.001,-7.143,-17.38,-5.772,1.97,-13.03,-3.628,-6.356,-4.189,-11.91,-3.615,-6.477,3.79,-7.397,-3.77,2.88,1.675))
```

1.2.2 Random-effects meta-analysis

```
model{
  for (i in 1:NS){  ### i cycles through the number of studies
    events.control[i]~dbin(p.control[i],total.control[i])
    events.treat[i]~dbin(p.treat[i],total.treat[i])
    logit(p.control[i]) <- u[i]
    logit(p.treat[i]) <- u[i]+lor[i]
    u[i] ~dnorm(0,0.001)
    lor[i]~dnorm(mu,prec.tau)  # #prior distribution for the log odds at the control
  }
  lor~dnorm(0,0.001)  ### prior distribution for the log odds ratio
  or<-exp(lor)
  prec.tau<1/tauOR.s
  tauOR.s~dlnorm(-4.18,inv.sd2)  ###prior based on empirical priors
  inv.sd2<1/(1.41^2)  ###prior based on empirical priors
  mu~dnorm(0,0.001)
  or<-exp(mu)
}
```

Data are exactly as in the fixed effects meta-analysis.
A set of initial values for the parameters may be needed, e.g.:

```r
list(\text{lor} = \text{c(-0.2565,-0.6751,-0.6719,-0.2435,-0.2081,-0.07849,-0.3697,-0.6819,-0.655,-0.1374,-0.1624,-0.5858,-0.6593,-0.3722,-0.5081,-0.2838,-0.599,-0.4624,-0.5108,-0.3789,-0.241,-0.7983,-0.5308,-0.4028)}, \text{mu} = -0.5211, \text{tauOR.s} = 0.04736, \text{u} = \text{c(-6.572,-4.79,-11.98,-4.946,-3.566,-5.413,-2.917,-4.257,-4.206,-8.771,-6.916,-6.12,-4.202,-4.361,-6.744,-4.817,-5.887,-3.585,-6.414,-3.455,-4.652,-4.216,-5.906,-4.053)})
```