Population health surveys and screening tools for depressive disorders: aims and uses

Jorge Arias de la Torre,1,2,3 Amy Ronaldson,4, Antoni Serrano-Blanco,2,5 Vicente Martín,2,3 Juan Ángel Bellón,6,7,8,9,10 Jose M Valderas,11,12,13 Jordi Alonso2,14,15

The article by Fischer and colleagues,1 based on data from the second wave of the European Health Interview Survey (EHIS-2), proposes the use of a Bayesian framework to account for the ‘imperfect diagnostic accuracy’ of the eight-item version of the Patient Health Questionnaire (PHQ-8), and to improve estimations of the prevalence of major depressive disorder (MDD).

It is well-known that estimating the prevalence of specific mental disorders directly using the results from screening tools (ie, without attending at the possible false positives and negatives) could lead to overestimations.2 It should also be noted that the term ‘depression’ is used in the literature for describing a broad spectrum of conditions, from MDD to a range of other mental health conditions and symptoms, and that clarity is essential to avoid misunderstandings. In our own study,3 we used a broad definition of depression (including MDD, dysthymia and depressive symptoms) under the label ‘current depressive disorder’, which we acknowledge might lead to misunderstandings. Also, it should not be forgotten that population health surveys, such as the EHIS-2, aim to identify and compare vulnerable groups and associated factors rather than make clinical diagnoses. Furthermore, screening tools, such as the PHQ-8, are not designed for diagnosis but to detect ‘probable cases’ of depressive disorders.2 While the detection of actual depressive disorder cases could be relevant from a clinical perspective, it may be more relevant from a public health perspective to identify vulnerable population groups and differences between them. This identification could be a key element to inform the development of primary prevention measures and public health policies.

Considering the Bayesian methods proposed for estimating the prevalence of depressive disorders,1 they resulted in substantially lower prevalence estimations than those observed in previous studies,3 even lower than in studies using clinical interviews.1 It should be highlighted that other more parsimonious and easily replicable methods have been previously proposed for this purpose, such as the use of two-step approaches or different cut-off scores,3 which would also have the added benefit of facilitating comparability with other studies worldwide. Besides, due to the lower precision of the estimations obtained using the Bayesian approach (with wider CIs),3 there is high uncertainty to establish possible differences by country based on them. Country differences have been consistently pointed out by previous research,1,4 and their clear identification could be a helpful resource to inform and implement effective and targeted public health interventions to reduce the burden of depression.

The inclusion of the PHQ-8 in population health surveys represents an efficient approach for estimating, comparing and monitoring the number of individuals and groups with probable depressive disorders. Bearing in mind that the aim of health surveys is not clinical diagnosis at individual level, and that depression screening tools are designed to identify individuals and groups with probable depression rather than making clinical diagnosis, while promising, new evidence is needed to confirm the suitability of the Bayesian approach for estimating and comparing the prevalence of specific depressive disorders using this type of data. Furthermore, using a clear definition of the term ‘depression’ could be helpful to be as accurate as possible when reporting prevalence estimations, for example, considering specific depressive disorders just when using clinical interviews, and depressive symptoms or probable depressive disorders when using screening tools.

Author affiliations
1Care in Long Term Conditions Research Division, King’s College London, London, UK
2CIBER Epidemiology and Public Health, CIBERESP, Barcelona, Spain
3Universidad de León, León, Spain
4Health Services and Policy Research Department, King’s College London, London, UK
5Institut de Recerca Sant Joan de Déu, Parc Sanitari Sant Joan de Déu, Barcelona, Spain
6Network for Research on Chronicity, Primary Care, and Health Promotion (RICAPPS), Madrid, Spain
7Prevention and Health Promotion Research Network (redAPP), Madrid, Spain
8Biomedical Research Institute of Málaga (IBIMA-Bionand platform), Malaga, Spain
9El Palo Health Centre, Andalusian Health Service (SAS), Málaga, Spain
10Department of Public Health and Psychiatry, Universidad de Malaga, Malaga, Spain
11Department of Medicine, National University of Singapore, Singapore
12Department of Family Medicine, National University Health System, Singapore
13Centre for Research in Health Systems Performance (CRiHSP), National University Health System, Singapore
14Health Services Research Group, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
15Dept. of Medicine and Life Sciences, Pompeu Fabra University (UPF), Barcelona, Spain

Twitter Amy Ronaldson @DrRonaldson

For numbered affiliations see end of article.

Correspondence to
Dr Jorge Arias de la Torre, King’s College London, London, SE1 8WA, UK; jorge.arias_de_la_torre@kcl.ac.uk

Received 1 May 2023
Accepted 5 June 2023
Published Online First 26 June 2023
Contributors All authors have contributed equally to the writing of this manuscript.

Funding The present work is partially funded by CIBER Epidemiology and Public Health (CIBERESP) as part of the Intramural call of 2021 (ESP21P105), the SGR Agencia de Gestió Ajuts Universitaris de Recerca (AGAUR 2021 SGR 00624), and the Medical Research Council (MRC) and Guy’s Charity. This article represents independent research part funded by the National Institute for Health Research (NIHR) Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King’s College London. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health.

Disclaimer The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health.

Competing interests None declared.

Patient consent for publication Not required.

Ethics approval Not applicable.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Not applicable.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs Jorge Arias de la Torre http://orcid.org/0000-0001-6908-9611
Amy Ronaldson http://orcid.org/0000-0001-8369-9168

REFERENCES