Adjunctive agents to antipsychotics in schizophrenia: A systematic umbrella review and recommendations for amino acids, hormonal therapies, and anti-inflammatory drugs

Supplementary material 1. Detailed methodology for expert meetings, literature searches, inclusion criteria, data extraction and risk of bias assessment.2 1. 2. 3 4. Subgroups.....4 5. 6. Risk of bias assessment4 7. Main outcomes......5 Supplementary material 2. Characteristics of the 29 meta-analyses with their risk of bias......6 Supplementary material 4. Characteristics of the 63 randomized controlled trials (RCTs) with Supplementary material 5. their risk of bias. 14 Supplementary material 6. Detailed risk of bias analysis of the 63 randomized controlled trials (RCTs). 25 Supplementary material 7. Results supporting the recommendations: from Level of Evidence Supplementary material 8. Context/rationale for the efficacy of each molecule, RCTs' global conclusions and risk of bias and subgroup analyses40 N-acetyl-cysteine (NAC)40 Sarcosine40 COX inhibitors (Aspirin, Celecoxib)......43 Complementary analyses on sample size, risk of bias and country Supplementary material 9. economic status 47 **Supplementary material 1.** Detailed methodology for expert meetings, literature searches, inclusion criteria, data extraction and risk of bias assessment.

1. Expert meetings

A series of six expert meetings were organized by the French Schizophrenia Expert Center Network (foundation FondaMental) between January 2022 and June 2022 (once a month, 2-hour long each). The agents were selected if there were at least three RCTs and one meta-analysis published on it. In these meetings, two to three experts who conducted a systematic umbrella review, presented their conclusions to the whole expert network on one or two adjunctive agents for the treatment of schizophrenia. Levels of evidence were determined according to the criteria of the Scottish Intercollegiate Guidelines Network (SIGN) [1] for each individual RCT as recommended by the WFSBP [2]. A methodological meeting was organized to harmonize the quality rating of the working groups. In case of doubt, the raters were requested to choose the most favorable level of evidence to avoid any over-interpretation of the results. In case of nonconsensus for one level of evidence, a consensus meeting with at least three authors was carried out (the two leading authors the first author). All expert clinicians and clinician researchers discussed the final results during the meeting sessions of the French Expert Schizophrenia Center Network. These data were then synthetized in an umbrella meta-review following WFSBP-grade recommendations [50]; importantly this method should not be confounded with the GRADE system [53].

As many molecules were only studied in few RCTs (much less than antipsychotics in comparison), we changed the wording from "strong recommendation" (corresponding to the WFSBP-grade 1 level) to "strong provisional recommendation" to indicate that further RCTs may have a high potential to modify the present recommendations (hence, provisional also applies to moderate and weak recommendations). According to WFSBP guidelines, "acceptability" ratings consider the following aspects: risk-benefit ratio (e.g., adverse effects, interactions), cost-benefit ratio, applicability in the target population, ethical and legal aspects, preferences of service users, and practicability" [2].

International experts were then contacted. The international expert was defined as a non-French expert who actively participated in a meta-analytic work including at least one of the molecules evaluated in the review or with an experience of graded recommendations or assessment of the risk of bias combined with being clinically active in treating patients with schizophrenia. The experts were asked to review and validate the conclusions of the selected and reviewed agents. This panel includes 9 experts (MB, MEB, MB, CUC, MF, JK, MS, IES, SMS). All molecules reached

consensus at the first step except hormonal therapies, for which there was a debate on safety. Recommendations for hormonal therapies were therefore downgraded.

2. Literature searches

Medline[®], Cochrane[®], Clinicaltrials.gov[1], EU Clinical Trials Register[2] databases were searched from their inception. The search paradigm was developed for Medline® and adapted for other databases: "schizophrenia or schizo-affective disorder or (first-episode psychosis) or (psychotic disorder)[Title/Abstract]" was combined with the following terms: (aspirin[Title/Abstract] OR N-acetylcelecoxib[Title/Abstract] "anti-inflammatory drugs"[Title/Abstract] OR cysteine[Title/Abstract] OR NAC[Title/Abstract] OR raloxifen[Title/Abstract] OR estrogen[Title/Abstract] PUFA[Title/Abstract] OR OR omega-3[Title/Abstract] OR sarcosine[Title/Abstract] OR minocycline[Title/Abstract])), with a filter for randomized controlled trials, systematic reviews and meta-analyses. The references were manually searched to recover potentially missed RCTs

3. Inclusion criteria

Participants. Patients with schizophrenia, schizo-affective disorder, schizophreniform disorder and first-episode schizophrenia in stabilized or acute phase, in and outpatients.

Interventions. The adjunctive agents with at least three randomized controlled trials (RCTs) and one meta-analysis were included in the present work, and a leading author (or a pair/triad of leading authors) was convened on a voluntary basis to extract this data in a preform sheet and to rate the risk of bias. The choice to limit the work to agents with at least three RCTs was based on the GRADE recommendations, which suggests that at least three RCTs are necessary to conclude on effectiveness/ineffectiveness with the highest degree of confidence (Level Of Evidence (LoE)= A or -A)[3] and to limit the size of the work to the drugs with the most advanced evidence. The included agents (and reviewers) were (in order of decreasing evidence/number of RCTs): Nacetyl-cysteine (leading authors: FB and GF), minocycline (RR, HT and FB), poly-unsatured fatty acids (PUFAs) (MU, DM and GF), estrogens (JM and GF), Selective estrogen receptor modulators (SERM)(BP and FB), celecoxib (FB and GF), aspirin (FS and GF), sarcosine (GF and FB).

The main outcomes were: effectiveness on positive symptoms, negative symptoms, general psychopathology (here referring to as the symptoms included in the PANSS-G subscale), total psychotic symptomatology and cognition (with any laboratory test but not with clinical scales like the PANSS cognitive factor). Secondary outcomes included adverse effects, all-cause of discontinuation (acceptability) and discontinuation due to adverse effects.

4. Data extraction

The following data were extracted by at least two authors: Study ID, country, Study population, Setting, Coinitiation or augmentation (antipsychotic treatment, flexible/fixed doses), total sample size (N treatment, N placebo), Dose of adjunctive treatment (mg/day), trial duration (weeks), effect on positive symptoms, negative symptoms, general psychopathology, total psychotic symptomatology and cognition (three modalities: significant improvement ("+"), non-significant effect ("ns") or significant worsening ("-")). For cognition, if some tests provided significant improvement and other non-significant results, "+/ns" was noted. If one test only was positive with a p value at the limit of significance (e.g. 0.04) with all other tests non-significant, this effect was attributed to multiple testing and the results were reported as non-significant (ns).

5. Subgroups

As the RCTs were heterogenous, we created some subgroups of the RCTs to determine if some precision-medicine recommendations could be provided. These subgroups were : first-episode schizophrenia/early-phase schizophrenia, chronic schizophrenia, stabilized schizophrenia, acute phase schizophrenia, augmentation design (i.e., adjunctive treatment added to stabilized antipsychotic), co-initiation design (i.e., in an acute phase), patients treated with clozapine, patients treated with other antipsychotics than clozapine (as clozapine is a proxy for treatment-resistant schizophrenia), trials including women only or men only, and childbearing-age women and post-menopausal women (these two last groups for hormonal therapy only).

Two studies explicitly reported that patients had predominant negative symptoms because the agents (here minocycline[4], and sarcosine[5]) were specifically tested for their effectiveness on negative symptoms. Thirty-three studies (52.4%) explicitly reported that patients had symptoms scoring above a certain cut-off (see Table SM4, column 3 "Study population").

As some authors have suggested that results may vary between high- and middle-income countries[6], we conducted additional sensitivity analyses in which we examined whether the probability of finding positive results was higher in upper middle-income countries compared to high-income countries. Upper middle-income countries were: China, India, Iran, Romania/Moldova, South Africa; high-income countries were: Australia, Norway, Poland, Spain, South Korea, Switzerland, the UK, and the USA[7].

Twenty-seven out of the included studies (42.9%) were carried out in upper middle-income countries (China, Iran, Romania, South Africa). Among the 24 studies with a low risk of bias, 12 (50.0%) were carried out in upper middle-income countries.

6. Risk of bias assessment

Levels of evidence were determined according to the criteria of the Scottish Intercollegiate Guidelines Network (SIGN)[8] as recommended in the World Journal of Biological Psychiatry guidelines[3]. The following forms were fulfilled by each leading author for each RCT and metaanalysis (**Supplementary Material 2)**.

A study was classified as "low risk of bias" if it was rated "high quality" according to SIGN criteria AND if the total sample size was \geq 30 AND if there were no conflicts of interest. A study was classified as "moderate risk of bias" if it was rated "acceptable" on the SIGN criteria OR if there were conflicts of interest AND if the total sample size was \geq 30. A study was classified as "high risk of bias" if it was rated "low quality" on the SIGN criteria OR if the total sample size was <30.

7. Main outcomes

The main outcomes were: effectiveness on positive symptoms, negative symptoms, general psychopathology, total psychotic symptomatology and cognition. Secondary outcomes included adverse effects, safety issues, all-cause of discontinuation (a proxy for acceptability) and discontinuation due to adverse effects. The last investigation was carried out on February 28, 2022.

Supplementary material 2. Characteristics of the 29 meta-analyses with their risk of bias.

Year	Study ID	N-acetyl- cysteine	Sarcosin e	Minocycl ine	PUFAs	Estrogen s	SERM	Aspirin	Celeco xib	Risk of bias
	unctive drugs	cysteme	C	inc	10175	5	JENN	Aspinin	Alle	
	Sommer IE, van Westrhenen R, Begemann									
	MJH, de Witte LD, Leucht S, Kahn RS.									
	Efficacy of Anti-inflammatory Agents to									
2014	Improve Symptoms in Patients With									
	Schizophrenia: An Update. Schizophr Bull.									
	2014;40(1):181-191.									
	doi:10.1093/schbul/sbt139	1		4	7	7		2	5	Low
	Çakici N, van Beveren NJM, Judge-Hundal G, Koola MM, Sommer IEC. An update on									
	the efficacy of anti-inflammatory agents									
	for patients with schizophrenia: a meta-									
	analysis. Psychol Med. 2019;49(14):2307-									
2019	2319. doi:10.1017/S0033291719001995	5		12	14	6	5	2	5	Low
	Cho M, Lee TY, Kwak YB, Yoon YB, Kim M,									
	Kwon JS. Adjunctive use of anti-									
2010	inflammatory drugs for schizophrenia: A									
2019	meta-analytic investigation of randomized									
	controlled trials. <i>Aust N Z J Psychiatry</i> . 2019;53(8):742-759.									
	doi:10.1177/0004867419835028	2		5	12	7	9	2	4	Moderate
	Chang CH, Lane HY, Tseng PT, Chen SJ, Liu	-		5		,	5	-		moderate
	CY, Lin CH. Effect of N-methyl-D-aspartate-									
	receptor-enhancing agents on cognition in									
	patients with schizophrenia: A systematic									
2019	review and meta-analysis of double-blind									
	randomised controlled trials. J									
	Psychopharmacol Oxf Engl.									
	2019;33(4):436-448. doi:10.1177/0269881118822157	2		3						Moderate
	Jeppesen R, Christensen RHB, Pedersen	2		5						Woderate
	EMJ, et al. Efficacy and safety of anti-									
	inflammatory agents in treatment of									
2020	psychotic disorders - A comprehensive									
	systematic review and meta-analysis.									
	Brain Behav Immun. 2020;90:364-380.	_				6	_			
	doi:10.1016/j.bbi.2020.08.028	7		8	14	6	7	2	3	low
N-acetylcy		1						1	r	
	Magalhães PVS, Dean O, Andreazza AC,									
	Berk M, Kapczinski F. Antioxidant treatments for schizophrenia. Cochrane									
2016	•									
2010	Database Syst Rev. Published online									
	February 5, 2016.									
	doi:10.1002/14651858.CD008919.pub2	2								Moderate
	Zheng W, Zhang QE, Cai DB, et al. N-									
	acetylcysteine for major mental disorders:									
2018	a systematic review and meta-analysis of									
	randomized controlled trials. <i>Acta</i> <i>Psychiatr Scand</i> . 2018;137(5):391-400.									
	doi:10.1111/acps.12862	6								Moderate
	Yolland CO, Hanratty D, Neill E, et al.	0								Woderate
	Meta-analysis of randomised controlled									
2020	trials with N-acetylcysteine in the									
2020	treatment of schizophrenia. Aust N Z J									
	Psychiatry. 2020;54(5):453-466.									
	doi:10.1177/0004867419893439	7								Low
Sarcosine		1	I			-		1		T
	Tsai GE, Lin PY. Strategies to enhance N-									
	methyl-D-aspartate receptor-mediated									
2010	neurotransmission in schizophrenia, a critical review and meta-analysis. Curr									
		1		1		1		1	1	1
	Pharm Des. 2010;16(5):522-537.									

	Year	Study ID	N-acetyl- cysteine	Sarcosin e	Minocycl ine	PUFAs	Estrogen s	SERM	Aspirin	Celeco xib	Risk of bias
	rear	Singh SP, Singh V. Meta-analysis of the	cysteme	e	iiie	FUTAS	3	JERIN	Азрітіт	AID	NISK OF BIUS
		efficacy of adjunctive NMDA receptor									
2	2011	modulators in chronic schizophrenia. CNS									
		Drugs. 2011;25(10):859-885.									1
		doi:10.2165/11586650-000000000-00000 Chang CH, Lin CH, Liu CY, Chen SJ, Lane HY.		4							Low
		Efficacy and cognitive effect of sarcosine									
		(N-methylglycine) in patients with									
	0000	schizophrenia: A systematic review and									
2	2020	meta-analysis of double-blind randomised									
		controlled trials. J Psychopharmacol Oxf									
		Engl. 2020;34(5):495-505.		-							
		doi:10.1177/0269881120908016 Marchi M, Galli G, Magarini FM, Mattei G,		7							Moderate
		Galeazzi GM. Sarcosine as an add-on									
		treatment to antipsychotic medication for									
2	2021	people with schizophrenia: a systematic									
2	2021	review and meta-analysis of randomized									
		controlled trials. Expert Opin Drug Metab									
		<i>Toxicol</i> . 2021;17(4):483-493. doi:10.1080/17425255.2021.1885648		6							Moderate
		Goh KK, Wu TH, Chen CH, Lu ML. Efficacy		0							would ale
		of N-methyl-D-aspartate receptor									
		modulator augmentation in schizophrenia:									
2	2021	A meta-analysis of randomised, placebo-									
		controlled trials. J Psychopharmacol Oxf									
		Engl. 2021;35(3):236-252.		c							
		doi:10.1177/0269881120965937		6							Moderate
Mind	ocyclir		1	1	1		1				1
		Oya K, Kishi T, Iwata N. Efficacy and									
		tolerability of minocycline augmentation therapy in schizophrenia: a systematic									
2	2014	review and meta-analysis of randomized									
		controlled trials. Hum Psychopharmacol.									
		2014;29(5):483-491.									
		doi:10.1002/hup.2426			4						Moderate
		Solmi M, Veronese N, Thapa N, et al.									
		Systematic review and meta-analysis of									
2	2017	the efficacy and safety of minocycline in schizophrenia. CNS Spectr.									
		2017;22(5):415-426.									
		doi:10.1017/S1092852916000638			6						Low
		Xiang YQ, Zheng W, Wang SB, et al.									
		Adjunctive minocycline for schizophrenia:									
2	2017	A meta-analysis of randomized controlled									
		trials. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol. 2017;27(1):8-									
		18. doi:10.1016/j.euroneuro.2016.11.012			8						Moderate
		Zheng W, Zhu XM, Zhang QE, et al.			_						
		Adjunctive minocycline for major mental									
2	2019	disorders: A systematic review. J									
		<i>Psychopharmacol Oxf Engl.</i> 2019;33(10):1215-1226.									
		doi:10.1177/0269881119858286			13						Moderate
		·	1	1	15		1			I	moderate
Poly-	-unsat	turated fatty acids (PUFAs) Joy CB, Mumby-Croft R, Joy LA.	1							1	
		Polyunsaturated fatty acid									
		supplementation for schizophrenia.									
2	2006	Cochrane Database Syst Rev.									
		2006;(3):CD001257.									
\square		doi:10.1002/14651858.CD001257.pub2				8					Low
		Fusar-Poli P, Berger G. Eicosapentaenoic									
		acid interventions in schizophrenia: meta- analysis of randomized, placebo-									
2	2012	controlled studies. J Clin Psychopharmacol.									
		2012;32(2):179-185.									
		doi:10.1097/JCP.0b013e318248b7bb				7					Low
		Chen AT, Chibnall JT, Nasrallah HA. A									
2	2015	meta-analysis of placebo-controlled trials									
		of omega-3 fatty acid augmentation in schizophrenia: Possible stage-specific				10					Moderate
		semeophicina. I ossible stage-specific	L	I	I	10	I			i	mouerate

Intel Intel <th< th=""><th></th><th>Year</th><th>Study ID</th><th>N-acetyl- cysteine</th><th>Sarcosin e</th><th>Minocycl ine</th><th>PUFAs</th><th>Estrogen s</th><th>SERM</th><th>Aspirin</th><th>Celeco xib</th><th>Risk of bias</th></th<>		Year	Study ID	N-acetyl- cysteine	Sarcosin e	Minocycl ine	PUFAs	Estrogen s	SERM	Aspirin	Celeco xib	Risk of bias
Clin Psychiatr. 2015;27(4):289:286.		Tear	· · · ·	cysteme	e	ille	PUFAS	5	JERIVI	Aspirin	XID	NISK OF DIAS
a of omega 3 polyunaturated faity adds supported to a school of a school												
a of omega 3 polyunaturated faity adds supported to a school of a school			, , , ,	-								
2021 supplements on psychopathology and meta-analysis of randomized controlled trists. Psychopharmacol QF figl. 2021;35(3):221-235. doi:10.1177/026981120981392 17 Moderate Extrogens and Stective strogen receptor modulators (SEM) M. Sommer IE. Strogen suggestation in doi:10.1016/j.stres.2012.06.016 5 Image: Controlled trists. Psychopharmacol. 2012;211/21231729 Image: Controlled trists. Psychopharmacol. 2012;211/21231729 Image: Controlled trists. Psychopharmacol. 2012;211/21231729 Image: Controlled trists. Psychopharmacol. 2013;211/21231729 Image: Controlled trists. Psychopharmacol. 2013;211/21231729 Image: Controlled trists. Psychopharmacol. 2014;211/231729 Image: Controlled trists. Psychopharmacol. 2016;211/2331729 Image: Controlled trists. Psychopharmacol. 2016;211/2331729 Image: Controlled trists. Psychopharmacol. 2017;211/231729 Image: Controlled trists. Psychopharmacol. 2018;211/231728 Image: Controlled trists. Psychopharmacol. 2018;211/231728 Image: Controlled trists. Psychopharmacol. 2018;211/231728 Image: Controlled trists. Psychopharmacol. 2018;211/231728 Image: Controlled trists. Psychopharmacol. 2019;211/231728 Image: Controlled trists. Psychopharmacol. 2019;211/23124 Image: Controlled trists. Psychopharmacol. 2019;211/23124 Image: Controlled trists. Psychopharmacol. 2018;211/23124 Image: Controlled trists. Psychopharmacol. 2019;211/23124 Image: Controlled trists. Psychopharmacol. 2019;211/23124 Image: Controlled trists. Psychopharmacol. 2019;211/23124 Image: Controlled trists. Psychopharmacol. 2019;211/23124												
2021 metabolic parameters in schizophrenia: A rate. J Psychophermacol Opf Engl. 2021; 35(3):221-23: doi:10.1177/02698112081392 17 Moderate Extorgens and Sective extregen receptor mollutors (SERM) 17 Moderate Extorgens and Sective extregen receptor mollutors (SERM) Image: Comparison of the comparison												
12024 Image: analysis of andonized controlled trials. Developmentation of a figure of a set of												
2021;35(3):221:235. 17 Moderate Estrogens and Selective estrogen receptor modulators (SERM) 17 Moderate 2021 Difference estrogen receptor modulators (SERM) 17 Moderate 2021 Difference estrogen receptor modulators (SERM) 17 Moderate 2021 Difference estrogen receptor modulators (SERM) 17 10 Moderate 2021 Difference estrogen receptor modulators (SERM) 17 10 10 2021 Difference estrogen receptor modulators (SERM) 10 10 10 2021 Difference estrogen receptor modulators (SERM) 10 10 2021 Difference estrogen receptor modulators (SERM) 10 10 10 2012 Difference estrogen receptor modulators (SERM) 10 10 10 2013 Frandomized, Couble-binding, placeboo- controlled trials, Schizophr Res. 2018 10 10 2018 Schizophrenia and women with a 2018 Schizophrenia and women with a 2018 10 10 10 2018 Schizophrenia: ready for practice or randomized couble-bindis, Actr Arch Womens Mem Health Couble, 2018; 2(1):1:4:1:4 9 10 10 2018 Schizophrenia: ready for practice or randomized couble-bindis, 2(1):0:2:3:1:4:1:4 10 10 4		2021										
doi:10.117/0209881120981392 17 Moderate Estrogens and Selective estrogen receptor modulators (SEM) Moderate 2012 Schmmer IE, Estrogen augmentation in control evidence. Schizophr Res. 2012;141(23):173-184. Low Low 2013 Characterization evidence. Schizophr Res. 2012;08:016 5 Low 2014 Characterization evidence. Schizophr Res. 2012;08:016 5 Low 2018 Schizophrenia: a quantitative review of advance of ad			trials. J Psychopharmacol Oxf Engl.									
Estrogens and Selective estrogen receptor modulators (SERM) Begemann MH, Dekker CF, van Lunenburg M, Sommer IE. Stroghr Res. 2012 different evidence. Schizophr Res. 2018 randomized. double-thind, placebo- controlled trials. Schizophr Res. 2018 double-different evidence. Schizophr Res. 2018 double-different evidence. Schizophr Res. 2018 randomized. double-thind, placebo- controlled trials. Schizophr Res. 2018 double-different evidence. Schizophr Res. 2018 randomized. double-thind, placebo- controlled trials. Schizophr Res. 2018 double-different evidence. Schizophr Res. 2018 double-different for 2018 schizophr-collas.dubie- 2018 double-different for 2018 schizophr-collas.dubie- 2018 double-different for 2019 double-different for 2010 double-different for 2010 double-different for 2010 double-different for 2011 double-different for 2012 double-different for 2012 double-different for 2012 double-different for 2013 double-double-different for 2013 double-double-different for 2013 double-double-different for 2019 do												
Begemann MH, Dolker CF, van Lunenburg M, Somme II. Estrogen sugmentation in current evidence. Shioph Res. 2012;14(2):3179-1206.0015 5 Low 2012 Zink M, Zheng W, LIX, et al. Adjunctive ratoxifene for postmenopausal women with Shiophrenia. A Index analysis of 2018 randomized, double-blind, placebo- controlled trails. Schizoph Res. 2018;197:288-293. doi:10.1016/j.schres.2018.01.017 5 Moderate 2018 Schizophrenia. A meta-analysis of 2018 5 Low 2018 Schizophrenia. Schizoph Res. 2018;197:288-293. doi:10.1016/j.schres.2018.01.017 5 Moderate 2018 Schizophrenia. Schizoph Res. 2018;197:288-293. doi:10.1016/j.schres.2018.01.017 5 Moderate 2018 Schizophrenia.spectrum disorder: a systematic review and meta-analysis. NPJ Schizophrenia.spectrum disorder: a sa adjunctive trastment for postmeropausal women with 2018 9 Low 2018 Schizophrenia.spectrum disorder: a sommer IE, de Witte L, Begemann M, Kahn RS. Nonsteroidal anti-inflammatory doi:10.1009/s00737.017.017.027.2 6 Moderate 2011 Schizophrenia: a souther schizophrenia: A southiet schizophrenia: A southiet schizophrenia: A souther schizoph							17					Moderate
M., Sommer IE. Estrogen augmentation in current evidence. Schizoph Res. 2012; 41(2-3):129-184. Image: Construction of the construction o	Est	trogens	and Selective estrogen receptor modulators	(SERM)								
2012 schizophrenia: a quantitative review of dictional squark table review of dictional squark space and squark table space and squark doi:10.1016/j.schize.2012.08.016 5 Low 2013 Zhu XM. Zheng W, Li XH, et al. Adjunctive raloafter for postmenogausal women with schizophrenia: A meta-analysis of randomized, double-hein, placebo- concolled trials. Schizophr Res. 2018; 10:1016/j.schize.2018.01.017 5 Moderate de Boer J, Prikken M, Lei WU. Begemann M, Sommer I. The effect of raloafter augmentation in men and women with a 2018; schizophrenia: a meta-analysis. NPJ Schizophrenia; spattered raloafter as an adjunctive treatment for postmenogausal women with 2018; schizophrenia: a meta-analysis of randomized controlled trials. Arch Womes, More Health. 2018; 21(1):31-41. doi:10.1038/schi2537-017-0073-2 9 Low COX inhibitor s Sommer IE, de Witte L, Begemann M, Kahn RS. Nonsteroidal anti-infiamatory drug schizophrenia: a meta-analysis of randomized controlled trials. Arch Womers Ment Health. 2018; 21(1):31-41. doi:10.1038/schi2633 9 Low COX inhibitor s Sommer IE, de Witte L, Begemann M, Kahn RS. Nonsteroidal anti-infiamatory drug of schizophrenia: a meta-analysis of randomized controlled trials. Arch Womers Ment Health. 2018; 21(1):31-41. doi:10.1007/sc0137-01-0773-2 6 Moderate 2013 Sommer IE, de Witte L, Begemann M, Kahn RS. Nonsteroidal anti-infiamatory drug schizophrenia: a meta-analysis of randomized controlled trials. Arch Womers Ment Health. 2018; 21(1):31-41. doi:10.1003/schizdbatati-infiamatory drug schizophrenia: Revit A meta-analysis Chin phytory.201274(1):41-44. doi:			Begemann MJH, Dekker CF, van Lunenburg									
2012 current evidence. Schizophr Res. 2013 Zhu XW, Alteng W. UNK et al. Adjunctive radoxifene for postmenopausal women 5 2018 randomized, double-blind, placebo- controlled trials. Schizophr Res. 2018 schizophr-conits peetrum disorder: a systematic review and meta-analysis. NPJ Schizophr. 2018;4(13). 5 Moderate 2018 schizophranita meta-analysis of randomized controlled trials. Arch Womers Met Heduh. 2018;21(1):31-41. 6 Moderate 2018 Sommer IE, de Witte L, Begemann M, Kahn RS. Nonsteroidal anti-inflammatory dug schizophrenia: a meta-analysis of randomized controlled trials. Arch Womers Met Heduh. 2018;21(1):31-41. 6 Moderate 2018 Sommer IE, de Witte L, Begemann M, Kahn RS. Nonsteroidal anti-inflammatory dug schizophrenia: a meta-analysis of randomized controlled trials. Arch Womers Met Heduh. 2018;31(1):31-41. 6 Moderate 2011 Sommer IE, de Witte L, Begemann M, Kahn RS. Nonsteroidal anti-inflammatory dug schizophrenia: a meta-analysis of randomized controlled trials. Schizophrenia: a												
2012;141(2-3):79-184. 5 Low 2hu XM, Zheng W, LiXH, et al. Adjunctive raloxifene for postmenopausal women with strolophnelia. Antizoph Res. 2018;197:288-793. 5 Low 2018 randomized, double-blind, placebo- controlled trails.chizoph Res. 2018;197:288-793. 5 Moderate 2018 doi:10.1016/j.schres.2018.01.017 5 Moderate de Boer J, Prikken M, Lei WU, Begemann M, Sommer I. The effect of raloxifene augmentation in men and women with a 2018 5 Low 2018 stophenein spectrum disorder: a systematic review and meta-analysis. NPJ Schizophrenia Spectrum disorder: a systematic review and meta-analysis of randomized controlled trails.chizophrenia an adjunctive treatment for postmenopausal women with 2018 9 Low 2018 Sommer IE, de Witte L, Begemann M, Kahn RS. Nonstrondal anti-inflammatory drug in schizophrenia: an eta-analysis of randomized controlled trails. Arch Womens Ment Heidrik J. 2018;21(1):1-14. 6 Moderate 2018 Sommer IE, de Witte L, Begemann M, Kahn RS. Nonstrondial anti-inflammatory drug in schizophrenia: ready for practice or so of schizophrenia: ready for practice or so soft schizophrenia: ready for practice or soft schizophrenia: ready for practice or schizophrenia: ready		2012										
doi:10.016/j.schres.2012.08.016 5 Low ZDUX WX, Afterg W, UN, H et J. Algunchie rakoxifene for postmenopausal women with schizophrenia: A meta-analysis of controlled trials. Schizophr Res. 2018; randomized, double-bind, placebo- controlled trials. Schizophr Res. 2016; j.schres.2018.01.017 5 Moderate de Boer, J. Prikken M, Lei WJ, Begemann M, Sommer I. The effect of raloxifene augmentation in men and women with a schizophrenia: a meta-analysis. NPJ Schizophr.2018;4(1):1. doi:10.018/s14537-017-0043-3 9 Low Wang Q, Dong X, Wang Y, U.X. Raloxifene as an adjunctive treatment for postmenopausal women with schizophrenia: a meta-analysis of randomized controlled trials. Arch Womens Ment Health. 2018;1(1):1. doi:10.108/s14537-017-0043-3 9 Low COX inhibitor Sommer IE, de Witte L, Begemann M, Kahn RS. Nonsteroidal anti- infammatory drugs for schizophrenia: read-analysis of randomized controlled trials. Arch Womens Ment Health. 2018;1(1):31-41. doi:10.1007/s00737-017-0773-2 6 Moderate COX inhibitor Sommer IE, de Witte L, Begemann M, Kahn RS. Nonsteroidal anti- infammatory drugs for schizophrenia: a meta-analytis of randomized controlled trials. Schizophrenia: a meta-analytis of randomized controlled trials. Schizophrenia: A Adjunctive Lage ID, Yang XH, et al. Adjunctive Lage ID, Yang XH, et al. Adjunctive calculated trials. Psychiatry Res. 2017;9:139-146. 1 4 Low 2017 2017 2017 2017 2017 2017 2017 2017			•									
Zhu XM, Zheng W, Li XH, et al. Adjunctive raloxforfer for postmonopausal women with schizophrenia: A meta-analysis of 2018 randomized, double-billind, placebo- controlled trials. Schizophr Res. 2015;197:288-293. doi:10.1016/j.schres.2018.01.017 5 Moderate de Boer J, Prikken M, Lei WU, Begemann M, Sommer I. The effect of raloxfiene augmentation in men and women with a 2018 schizophrenia spectrum disorder: a systematic review and meta-analysis. NPJ Schizophrenia Spectrum disorder: a systematic review and meta-analysis. NPJ Schizophrenia: a meta-analysis. NPJ Schizophrenia: a meta-analysis. NPJ Schizophrenia: meta-analysis. NPJ Schizophrenia: meta-analysis. NPJ Schizophrenia: a meta-analysis. NPJ Schizophrenia: a meta-analysis. NPJ Schizophrenia: meta-analysis. NPJ Schizophrenia: meta-analysis. NPJ Schizophrenia: meta-analysis. NPJ Schizophrenia: meta-analysis. Of randomized controlled trials. Arch Ware go Q, Dong X, Wang Y, Li X, Raloxfiene as an adjunctive treatment for a sommer IE, de Witte L, Begemann M, Kahn RS. Nonsteroidal anti-inflammatory drugs in schizophrenia: ready for practice or som schizophrenia: ready for practice or som schizophrenia: ready for practice or sold schizophrenia: ready for practice or schizophrenia: a 2013 meta-analysis of randomized controlled trials. Schizophrenia: a 2017 hling, Disebo-controlled trials. Psychiatr Res. 2017;213:91-141. doi:10.103/schulySto70 1 4 Low 2017 This M, Kahimator T, Müller N, et al. Adjunctive celecols for schizophrenia: A meta-analysis of randomized controlled trials. Schizophrenia: A doi:10.1035/sbhizophrenia: A meta-analysis of randomized, double- ton trolled trials. Schizophrenia: A meta-analysis of								5				Low
raloxifene for postmenopausal women image: constraint of the second												2011
2018 randomized, double-blind, placebo- controlled trials. Schizophr Res. 2018;197:288-293. doi:10.1016/j.schres.2018.01.017 5 Moderate de Eder J, Prikem N, Lei WJ, Begemann M, Sommer I. The effect of ralox/fene augmentation in men and women with a 2018 5 Moderate uest Boer J, Prikem N, Lei WJ, Begemann M, Sommer I. The effect of ralox/fene augmentation in men and meta-analysis. <i>NPJ</i> Schizophr.2018;4(1):1. doi:10.1038/s137:017-0043-3 9 Low Wang Q, Dong X, Wang Y, Li X. Raloxifene as an adjunctive treatment for pschizophr.2017;9017:017:017:017:017:017:017:017:017:017:												
controlled trials. Schizophr Res. 308.197.288-39.3 Moderate doi:10.1016/j.schres.2018.01.017 5 Moderate de Boer J, Prikken M, Lei WU, Begemann 5 Moderate 2018. schizophrenia Spectrum disorder: a systematic review and meta-analysis. NPJ Schizophrenia Spectrum disorder: a systematic review and meta-analysis. NPJ Schizophrenia Spectrum disorder: a systematic review and meta-analysis of randomized controlled trials. Arch Womes Ment Health. 2018. 2(1):13.14.1. doi:10.1007/s00737-017-0773-2 9 Low COX imhibitor Sommer IE, de Witte L, Begemann M, Kahn RS. Nonsteroidal anti-inflammatory doi:10.4088/ICP.10r06823 1 4 Low 2012 Sommer IE, de Witte L, Begemann M, Kahn RS. Nonsteroidal anti-inflammatory doi:10.4088/ICP.10r06823 1 4 Low 2013 Sommer IE, de Witte L, Begemann M, Kahn RS. Nonsteroidal anti-inflammatory doi:10.4088/ICP.10r06823 1 4 Low 2014 Witte L, Begemann M, Kahn RS. Nonsteroidal anti-inflammatory doi:10.4088/ICP.10r06823 1 4 Low 2013 Mitta M, Kishimoto T, Müller N, et al. Adjunctive use for schizophrenia: a Aug for schizophrenia: a Aug for schizophrenia: A Adjunctive electorial fraits. Schizophr Buil.2021;37(4):1077-1087. <td< td=""><td></td><td></td><td>with schizophrenia: A meta-analysis of</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			with schizophrenia: A meta-analysis of									
2018;197:288-293. 5 Moderate doi:10.1016/j.schres.2018.01.017 5 Moderate doi:0.1016/j.schres.2018.01.017 5 Moderate augmentation in men and women with a schizophrenia spectrum disorder: a systematic review and meta-analysis. NPJ Schizophr.2018;4(1):1. 9 Low Wang Q. Dong X. Wang Y. Li X. Raloxifene as an adjunctive treatment for postmenopausib women with schizophrenia: a meta-analysis of randomized controlled trials. Arch Womens Ment Health. 2018;2(1):31-41. 9 Low COX inhibitor 5 Moderate 6 Moderate Sommer IE, de Witte L, Begemann M, Kahn RS. Nonstroidal anti-inflamatory drugs in schizophrenia: ready for practice or a good start? A meta-analysis. J Clin Psychiatry. 2012;3(4):414-419. 6 Moderate 2012 Sommer IE, de Witte L, Begemann M, Kahn RS. Nonstroidal anti-inflamatory drugs in schizophrenia: ready for practice or a good start? A meta-analysis. J Clin Psychiatry. 2012;3(4):414-419. 1 4 doi:10.1003/sch0		2018										
doi:10.1016/j.schres.2018.01.017 5 Moderate de Boer J, Frikken M, Lei WU, Begemann M, Sommer I. The effect of raloxifene augmentation in men and women with a 2018 schizophrenia performation in men and women with a systematic review and meta-analysis. NPJ Schizophren 2018/4(1):1. doi:10.1038/41137-017-0043-3 9 Low Wang Q, Dong X, Wang Y, Li X. Raloxifene as an adjunctive treatment for postmenopausal women with schizophrenia: meta-analysis of randomized controlled trials. Arch Womens Ment Health. 2018;2(1):31-41. doi:10.1007/S00737-017-0773-2 6 Moderate COX inhibitor Sommer IE, de Witte L, Begemann M, Kahn RS. Nonsterolidal anti-inflammatory drugs in schizophrenia: ready for practice or good start? A meta-analysis. JClin Psychiatry. 2012;72(4):414-419. doi:10.4088/JCP.107068243 1 4 Low 2013 Sommer IE, de Witte V, Begemann M, Kahn RS. Nonsterolidal anti-inflammatory drugs in schizophrenia: ready for practice or agood start? A meta-analysis. JClin Psychiatry. 2012;72(4):414-419. doi:10.4088/JCP.107068243 1 4 Low 2013 meta-analysis of randomized controlled trials. Schizophrenia: a meta-analytic investigation of randomized controlled trials. Schizophrenia: A regular disso for adomized, double- bind, placebo-controlled trials. Psychiatr Res. 2017;92:139-146. doi:10.1016/j.jsychies.2017.00.004 8 Moderate 2021 Zheng W, Gai DR, Yang XH, et al. Adjunctive celecoxib for schizophrenia: A meta-analytic investigation of randomized controlled trials. Schizophrenia: A meta-analytic investigation of randomized controlled trials. Schizophrenia: A meta-analytic investigation of patients With Schizophrenia: Results of Tw												
de Boer J, Prikken M, Lei WU, Begemann M, Sommer I. The effect of raloxifiene augmentation in men and women with a schizophrenia spectrum disorder: a systematic review and meta-analysis. NPJ Schizophr. 2018;4(1):1. doi:10.1038/s41537-017-0043-3 9 Low Wang Q, Dong X, Wang Y, Li X. Raloxifene as an adjunctive treatment for postmenopausal women with schizophrenia: a meta-analysis of ranomized controlled trials. Arch Womens Ment Health. 2018;21(1):31-41. doi:10.1007/s00737-017-0773-2 6 Moderate COX inhibitor s Sommer IE, de Witte L, Begemann M, Kahn RS. Nonsteroidal anti-inflammatory drugs in schizophrenia: ready for practice or a good start? A meta-analysis. J Clin Psychotry. 2012;3(4):414-419. doi:10.4008/JCP.1076823 1 4 Low Nitta M, Kishimotor T, Miller N, et al. Adjunctive use of nonsteroidal anti- inflammatory drugs for schizophrenia: a 2013 meta-analytis J Clin Psychotry. 2012;3(4):414-419. doi:10.1038/schizophrenia: A adjunctive celecoxib for schizophrenia: A meta-analytic investigation of randomized controlled trials. Schizophrenia: A meta-analytic investigation of randomized doi:10.10105/j.jpsychies.2017.04.004									-			Madarata
An, Sommer I. The effect of raloxifene augmentation in men and women with a schizophren 3psetrum disorder: a systematic review and meta-analysis. NPJ Schizophr. 2018; 4(1):1. doi:10.1038/s41537-017-0043-3 9 Low Wang Q, Dong X, Wang Y, Li X, Raloxifene as an adjunctive treatment for postmenopausal women with 2018 9 Low 2018 Wang Q, Dong X, Wang Y, Li X, Raloxifene as an adjunctive treatment for postmenopausal women with 2018 9 Low 2018 Schizophrenia: reat-analysis of randomized controlled trials. Arch Womens Ment Health. 2018;21(1):31-41. doi:10.1007/S00737-017-0773-2 6 Moderate COX inhibitor s Sommer IE, de Witte L, Begemann M, Kahn RS. Nonsteroidal anti-Inflammatory drugs in schizophrenia: ready for practice or ago ds stri 7. Meta-analysis. J Clin Psychiatry. 2012;73(4):414-419. doi:10.4088/JCP.10r06823 1 4 Low 2012 of construction of randomized controlled trials. Schizophrenia: a ago ds stri 7. Muller N, et al. Adjunctive sep of nonsteroidal anti- inflammatory drugs for schizophrenia: a adjunctive septime for schizophrenia: a coll ameta-analysic for schizophrenia: a doi:10.1036/j.byang XH, et al. Adjunctive celecoxib for schizophrenia: A drial-analysis of randomized controlled trials. Schizophr Bull. 2017 2 6 Low Weiser M, Zamora D, Levi L, et al. Adjunctive celecoxib for schizophrenia: A meta-analysis of randomized, double- bind, placebo-controlled trials. Schizophrenia: A meta-analysis of randomized, double- bind, placebo-controlled trials. J Psychiatr Res. 2017;921:39:146. 8 Modera									5		-	woderate
2018 augmentation in men and women with a schizophrenia spectrum disorder: a systematic review and meta-analysis. NPJ Schizophr. 2018;4(1):1. doi:10.1038/s135.017-0043-3 9 Low Wang Q, Dong X, Wang Y, Li X, Raloxifene as an adjunctive treatment for postmenopausal women with 2018 schizophrenia: a meta-analysis of randomized controlled trials. Arch Womens Ment Health. 2018;21(1):31-41. doi:10.1007/s00737-017-0773-2 6 Moderate COX inhibitor sommer IE, de Witte L, Begemann M, Kahn RS. Nonsteroidal anti-inflammatory drugs in schizophrenia: ready for practice or a good start? A meta-analysis. J Clin Psychiatry. 2012;73(4):414-419. doi:10.4088/JCP.10ro6823 1 4 Low NItta M, Kishimoto T, Müller N, et al. Adjunctive celecoxib for schizophrenia: a meta-analysis. J Clin Psychiatry. 2012;73(4):414-419. doi:10.4088/JCP.10ro6823 1 4 Low 2013 Anita M, Kishimoto T, Müller N, et al. Adjunctive use for ionsteroidal anti-i inflammatory drugs for schizophrenia: a meta-analysis. J Clin Psychiatry. 2012;73(4):414-419. doi:10.4088/JCP.10ro6823 1 4 Low Aligunctive use for ionsteroidal anti-i inflammatory drugs for schizophrenia: a meta-analysis. J Clin Psychiatry. 2012;73(4):414-419. doi:10.1033/stebul/sbt070 2 6 Low 2013 Mitta M, Kishimoto T, Müller N, et al. Adjunctive use for ionsteroidal anti-i inflammatory drugs for schizophrenia: a meta-analysis. J Clin Psychiatr Res. 2017;92:139-146. doi:10.1033/stebul/sbt070 2 6 Low 2017												
systematic review and meta-analysis. NPJ 9 Low Schizophr. 2018;4(1):1. doi:10.1038/s41537-017-004-3 9 Low Wang Q, Dong X, Wang Y, Li X. Raloxifene as an adjunctive treatment for postmenopausal women with postmenopausal women with adminized controlled trials. Arch Womens Ment Heolth. 2018;21(1):31-41. 9 Low 2018 schizophrenia: a meta-analysis of tradomized controlled trials. Arch Womens Ment Heolth. 2018;21(1):31-41. 6 Moderate COX Inhibitor 5 6 Moderate 2012 Sommer IE, de Witte L, Begemann M, Kahn RS. Nonsteroidal anti-inflammatory drugs in schizophrenia: ready for practice or a good start? A meta-analysis. J Clin Psychiatry. 2012;73(4):414-419. 1 4 2011 Adjunctive use of nonsteroidal anti-inflammatory drugs in schizophrenia: a mata-analysis. J Clin Psychiatry. 2012;73(4):414-419. 1 4 2012 NItta M, Kishimoto T, Muller N, et al. Adjunctive use of nonsteroidal anti-inflammatory drugs for schizophrenia: a 1 4 Low 2013 meta-analysis. J Clin Psychiatry. 2012;74(1):414-419. 2 6 Low 2012 doi:10.4088/ICP.10706823 1 4 Low 2013 meta-analysis. J Clin Psychiatry. 2012;74(1):414-419. 2 6 Low 2013 meta-analysis. J Clin Psychiatry. Res. 2017;92:139-146. 2 6 Low 2014 <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			-									
Schizophr. 2018;4(1):1. doi:10.1038/s41337-017-0043-3 9 Low Wang Q, Dong X, Wang Y, Li X, Raloxifene as an adjunctive treatment for postmenopausal women with schizophrenia: a meta-analysis of randomized controlled trials. Arch Womers Ment Health. 2018;2(1):31-41. doi:10.1007/s00737-017-0773-2 6 Moderate COX inhibitor s Sommer IE, de Witte L, Begemann M, Kahn RS. Nonsteroidal anti-inflammatory drugs in schizophrenia: ready for practice or a good start? A meta-analysis. J Cliin Psychiatry. 2012;73(4):414-419. doi:10.4088/JCP.1076823 1 4 National M, Kishimor T, Müller N, et al. Adjunctive use of nonsteroidal anti- inflammatory drugs for schizophrenia: a meta-analytic inradomized controlled trials. Schizophr Bull. 2013 2 6 Low Zheng W, Cai DB, Yang XH, et al. Adjunctive celeoxib for schizophrenia: A meta-analytic inradomized, doi:10.1093/schbul/sbt070 2 6 Low 2017 8 Zheng W, Cai DB, Yang XH, et al. Adjunctive celeoxib for schizophrenia: A meta-analytic inradomized, doi:10.1093/schbul/sbt070 2 6 Low 2017 8 Weiser M, Zamora D, Levi L, et al. Adjunctive Aguit results of Two Randomized Controlled trials. Schizophr Bull. 2021;74(4):1077-1087. 8 Moderate		2018	0									
doi:10.1038/s41537-017-0043-3 9 Low Wang Q, Dong X, Wang Y, Li X. Raloxifene as an adjunctive treatment for postmenopausal women with schizophrenia: a meta-analysis of randomized controlled trials. Arch Womens Ment Health. 2018;21(1):31-41. doi:10.1007/s00737-017-0773-2 6 Moderate COX inhibitor s Sommer IE, de Witte L, Begemann M, Kahn RS. Nonsteroidal anti-inflammatory drugs in schizophrenia: ready for practice or a good start? A meta-analysis. J Clin Psychiatry. 2012;73(4):414-419. doi:10.4088/JCP.10r06823 1 4 Low Nitta M, Kishimoto T, Müller N, et al. Adjunctive use of nonsteroidal anti- inflammatory drugs for schizophrenia: a doi:10.1093/schul/sbt070 2 6 Low 2012 Zotra discount of andomized controlled trials. Schizophrenia: A meta-analytis of randomized controlled trials. Schizophrenia: A meta-analytis of randomized controlled trials. Schizophrenia: A meta-analysis of randomized, double- blind, placebo-controlled trials. J Psychiatr Res. 2017;92:139-146. 2 6 Low 2012 Zheng W, Cai DB, Yang XH, et al. Adjunctive calce on trailed trials. J Psychiatr Res. 2017;92:139-146. 8 Moderate 2017 Weiser M, Zamora D, Levi L, et al. Adjunctive calce on trailed trials. J Psychiatr Res. 2017;92:139-146. 8 Moderate 2021 Weiser M, Zamora D, Levi L, et al. Adjunctive calce on trailes to Two Randomized controlled trials. J Psychiatr Res. 2017;92:139-146. 8 Moderate			systematic review and meta-analysis. NPJ									
Wang Q, Dong X, Wang Y, Li X. Raloxifene as an adjunctive treatment for postmenopausal women with schizophrenia: a meta-analysis of randomized controlled trials. Arch Womens Ment Health. 2018;21(1):31-41. doi:10.1007/s00737-017-0773-2 6 Moderate COX inhibitor s Sommer IE, de Witte L, Begemann M, Kahn RS. Nonsteroidal anti-inflammatory drugs in schizophrenia: ready for practice or a good start? A meta-analysis. J Clin Psychiatry. 2012;73(4):414-419. doi:10.4088/JCP.1076823 1 4 Low Nitta M, Kishimoto T, Müller N, et al. Adjunctive use of nonsteroidal anti- inflammatory drugs for schizophrenia: a meta-analysis of schizophrenia: A meta-analysis Orable Johney Johney doi:10.1093/schbul/sbt070 2 6 Low Z012 012 013 013 013 013 014 0120.1093/schbul/sbt070 Z for Low 8 Moderate 2013 014 0150.10106/j.jpsychires.2017.04.004 Weiser, 2017;319(4):123-1241. doi:10.1016/j.jpsychires.2017.04.004 Weiser, 2017;319(4):123-1241. doi:10.1016/j.jpsychires.2017.04.004 Weiser, 2017;319(4):123-1241. doi:10.1016/j.jpsychires.2017.04.004 Weiser, 2017;319(4):123-1241. doi:10.1016/j.jpsychires.2017.04.004 Weiser, 2017;319(4):127.04. 8 Moderate 2017 017 017 017 017 017 017 017 017 017												
as an adjunctive treatment for postmenopausal women with schizophrenia: a meta-analysis of randomized controlled trials. Arch Womens Ment Health. 2018;21(1):31-41. doi:10.1007/s00737-017-0773-2 6 Moderate COX inhibitor 5 6 Moderate 20112 Sommer IE, de Witte L, Begemann M, Kahn RS. Nonsteroidal anti-inflammatory drugs in schizophrenia: reaffammatory drugs for schizophrenia: a 2013 1 4 Low Nitta M, Kishimoto T, Müller N, et al. Adjunctive use of nonsteroidal anti- inflammatory drugs for schizophrenia: a 2013 1 4 Low Nitta M, Kishimoto T, Müller N, et al. Adjunctive use of nondomized controlled trials. Schizophrenia: A meta-analytic investigation of randomized controlled trials. Schizophrenia: A meta-analysis of randomized, double- blind, placebo-controlled trials. J Psychiatr Res. 2017;92:139-146. 2 6 Low 2012 Zheng W, Cai DB, Yang XH, et al. Adjunctive Aspirin vs Placebo in Patients Weiser M, Zamora D, Levi L, et al. Adjunctive Aspirin vs Placebo in Patients Weiser M, Zamora D, Levi L, et al. Adjunctive Aspirin vs Placebo in Patients Weiser M, Zamora D, Levi L, et al. Adjunctive Aspirin vs Placebo in Patients Weith Schizophrenia: Results of Two Randomized Controlled Tri									9			Low
2018postmenopausal women with schizophrenia: a meta-analysis of randomized controlled trials. <i>J Psychiatr</i> Res. 2017;92:139-146. doi:10.1007/S00737-017-0773-26ModerateCOX inhibitor56Moderate2018Sommer IE, de Witte L, Begemann M, Kahn RS. Nonsteroidal anti-inflammatory drugs in schizophrenia: ready for practice or a good start? A meta-analysis. <i>J Clin</i> <i>Psychiatry</i> . 2012;73(4):414-419. doi:10.4088/JCP.1070682314LowNitta M, Kishimoto T, Müller N, et al. Adjunctive use of nonsteroidal anti- inflammatory drugs for schizophrenia: a 201314LowANitta M, Kishimoto T, Müller N, et al. Adjunctive celecoxib for schizophrenia: A meta-analysis of randomized controlled trials. <i>Schizophrenia</i> : A meta-analysis of andomized, double- blind, placebo-controlled trials. <i>J Psychiatr</i> Res. 2017;92:139-146. doi:10.1016/j.jpsychires.2017.04.00426Low2017Weiser M, Zamora D, Levi L, et al. Adjunctive celecoxib for schizophrenia: A meta-analysis of randomized controlled trials. <i>J Psychiatr</i> Res. 2017;92:139-146. doi:10.1016/j.jpsychires.2017.04.0048Moderate2021Weiser M, Zamora D, Levi L, et al. Adjunctive Aspirin vs Placebo in Patients With Schizophrenia: A meta-analysis of randomized controlled trials. <i>J Psychiatr</i> Res. 2017;92:139-146. doi:10.1016/j.jpsychires.2017.04.0048Moderate2021Weiser M, Zamora D, Levi L, et al. Adjunctive Aspirin vs Placebo in Patients With Schizophrenia: Results of Two Randomized Controlled Trials. <i>Schizophr</i> Bull. 2021;47(4):1077-1087.8Moderate												
2018 schizophrenia: a meta-analysis of randomized controlled trials. Arch Womens Ment Health. 2018;21(1):31-41. doi:10.1007/s00737-017-0773-2 6 Moderate COX inhibitor 6 Moderate 2012 Sommer IE, de Witte L, Begemann M, Kahn RS. Nonsteroidal anti-inflammatory drugs in schizophrenia: ready for practice or a good start? A meta-analysis. J Clin Psychiatry. 2012;73(4):414-419. doi:10.4088/JCP.1076823 1 4 Low 2012 Sommer IE, de Witte L, Begemann M, Kahn RS. Nonsteroidal anti-inflammatory drugs in schizophrenia: ready for practice or a good start? A meta-analysis. J Clin Psychiatry. 2012;73(4):414-419. doi:10.4088/JCP.1076823 1 4 Low 2013 Nitta M, Kishimoto T, Müller N, et al. Adjunctive use of nonsteroidal anti-inflammatory drugs for schizophrenia: a meta-analytic investigation of randomized controlled trials. Schizophr Bull. 2013;39(6):1230-1241. doi:10.1093/schbul/sbt070 2 6 Low 2017 Zheng W, Cai DB, Yang XH, et al. Adjunctive celeoxib for schizophrenia: A meta-analysis of randomized, double-blind, placebo-controlled trials. J Psychiatr Res. 2017;9:1339-146. doi:10.1016/j.jpsychiatrs.2017.04.004 8 Moderate 2017 Weiser M, Zamora D, Levi L, et al. Adjunctive celeoxib for schizophrenia: A meta-analysis of randomized, double-blind, placebo-controlled trials. J Psychiatr Res. 2017;9:139-146. doi:10.1016/j.jpsychiatrs.2017.04.004 8 Moderate 2017 Weiser M, Zamora D, Levi L, et al. Adjunctive celoxib for Sc			-									
randomized controlled trials. Arch Womens Ment Health. 2018;21(1):31-41. doi:10.1007/s00737-017-0773-2 6 Moderate COX inhibitor 5 6 Moderate 2012 Sommer IE, de Witte L, Begemann M, Kahn RS. Nonsteroidal anti-inflammatory drugs in schizophrenia: ready for practice or a good start? A meta-analysis. J Clin Psychiatry. 2012;73(4):414-419. 1 4 Low 1 4 Low 1 4 Low 2012 or a good start? A meta-analysis. J Clin Psychiatry. 2012;73(4):414-419. 1 4 Low 1 4 Low 1 4 Low 2013 meta-analytic investigation of randomized controlled trials. Schizophrenia: a meta-analytic investigation of randomized controlled trials. Schizophrenia: A meta-analysio for schizophrenia: A meta-analysio for schizophrenia: A meta-analysio for schizophrenia: A meta-analysio for schizophrenia: A meta-analysis J Clin. 2 6 Low 2013 Meta-analysis J Clin. 2 6 Low 8 Moderate 2011 Meta-analytic investigation of randomized controlled trials. Psychiatr Res. 2017;92:139-146. 8 Moderate 2012 Weiser M. Zamora D, Levi L, et al. Adjunctive Aspinin vs Placebo in Patients With Schizophrenia: Results of Two Randomized Controlled Trials. Schizophr Bull. 2021;47(4):1077-1087. 8 <td></td> <td>2018</td> <td></td>		2018										
doi:10.1007/s00737-017-0773-2 6 Moderate COX inhibitor S Sommer IE, de Witte L, Begemann M, Kahn RS. Nonsteroidal anti-inflammatory drugs in schizophrenia: ready for practice or a good start? A meta-analysis. J Clin Psychiatry. 2012;73(4):414-419. Image: Sommer IE, de Witte L, Begemann M, Kahn RS. Nonsteroidal anti-inflammatory drugs in schizophrenia: ready for practice or a good start? A meta-analysis. J Clin Psychiatry. 2012;73(4):414-419. Image: Sommer IE, de Witte L, Begemann M, Kahn RS. Nonsteroidal anti-inflammatory drugs in schizophrenia: a meta-analytic investigation of randomized controlled trials. Schizophr Bull. Image: Sommer IE, de Witte L, Begemann M, Kishimoto T, Müller N, et al. 2013 Mitta M, Kishimoto T, Müller N, et al. Adjunctive use of nonsteroidal anti- inflammatory drugs for schizophrenia: a meta-analytic investigation of randomized controlled trials. Schizophr Bull. Image: Sommer IE, de Witte L, Begemann M, Kahn RS, Nonsteroidal anti- inflammatory drugs for schizophrenia: A meta-analytic investigation of randomized controlled trials. Schizophrenia: A meta-analysis of randomized, double- blind, placebo-controlled trials. J Psychiatr Res. 2017;92:139-146. Image: Sommer L, Begemann L, Begeman		2010										
COX inhibitor Sommer IE, de Witte L, Begemann M, Kahn RS. Nonsteroidal anti-inflammatory drugs in schizophrenia: ready for practice or a good start? A meta-analysis. J Clin Psychiatry. 2012;73(4):414-419. doi:10.4088/JCP.10r06823 1 4 Low Nitta M, Kishimoto T, Müller N, et al. Adjunctive use of nonsteroidal anti- inflammatory drugs for schizophrenia: a meta-analytic investigation of randomized controlled trials. Schizoph Bull. 2013;39(6):1230-1241. doi:10.1093/schbul/sbt070 2 6 Low 2017 Zheng W, Cai DB, Yang XH, et al. Adjunctive celecoxib for schizophrenia: A meta-analytis of randomized, double- blind, placebo-controlled trials. J Psychiatr Res. 2017;92:139-146. doi:10.1016/j.jpsychires.2017.04.004 8 Moderate 2021 Weiser M, Zamora D, Levi L, et al. Adjunctive Aspirin vs Placebo in Patients With Schizophrenia: Results of Two Randomized Controlled Trials. Schizophr Bull. 2021;47(4):1077-1087. 8 Moderate			Womens Ment Health. 2018;21(1):31-41.									
inhibitor s Image: Control of the second secon			doi:10.1007/s00737-017-0773-2						6			Moderate
s Sommer IE, de Witte L, Begemann M, Kahn RS. Nonsteroidal anti-inflammatory drugs in schizophrenia: ready for practice or a good start? A meta-analysis. J Clin Psychiatry. 2012;73(4):414-419. doi:10.4088/JCP.10706823 1 4 Low Nitta M, Kishimoto T, Müller N, et al. Adjunctive use of nonsteroidal anti- inflammatory drugs for schizophrenia: a meta-analytic investigation of randomized controlled trials. Schizophr Bull. 2013;39(6):1230-1241. doi:10.1093/schbul/sbt070 2 6 Low 2017 Zheng W, Cai DB, Yang XH, et al. Adjunctive celecoxib for schizophrenia: A meta-analysis of randomized, double- blind, placebo-controlled trials. J Psychiatr Res. 2017;92:139-146. doi:10.1016/j.jpsychires.2017.04.004 3 Moderate 2018 Weiser M, Zamora D, Levi L, et al. Adjunctive Aspirin vs Placebo in Patients With Schizophrenia: Results of Two Randomized Controlled Trials. Schizophr Bull. 2021;47(4):1077-1087. 8 Moderate												
2012 Sommer IE, de Witte L, Begemann M, Kahn RS. Nonsteroidal anti-inflammatory drugs in schizophrenia: ready for practice or a good start? A meta-analysis. J Clin Psychiatry. 2012;73(4):414-419. 1 4 Low 2013 Nitta M, Kishimoto T, Müller N, et al. Adjunctive use of nonsteroidal anti- inflammatory drugs for schizophrenia: a meta-analytic investigation of randomized controlled trials. Schizophr Bull. 2013;39(6):1230-1241. 1 4 Low 2014 Zheng W, Cai DB, Yang XH, et al. Adjunctive celecoxib for schizophrenia: A meta-analysis of randomized controlled trials. Schizophrenia: A meta-analysis of randomized, double- blind, placebo-controlled trials. J Psychiatr Res. 2017;92:139-146. doi:10.1016/j.jpsychires.2017.04.004 2 6 Low 2011 Weiser M, Zamora D, Levi L, et al. Adjunctive Aspirin vs Placebo in Patients With Schizophrenia: Results of Two Randomized Controlled Trials. Schizophr Bull. 2021;47(4):1077-1087. 8 Moderate		nibitor										
2012Kahn RS. Nonsteroidal anti-inflammatory drugs in schizophrenia: ready for practice or a good start? A meta-analysis. J Clin Psychiatry. 2012;73(4):141-419. doi:10.4088/JCP.1070682314Low2013Nitta M, Kishimoto T, Müller N, et al. Adjunctive use of nonsteroidal anti- inflammatory drugs for schizophrenia: a meta-analytic investigation of randomized controlled trials. Schizophr Bull. 2013;39(6):1230-1241. doi:10.1093/schbul/sbt07014Low2017Zheng W, Cai DB, Yang XH, et al. Adjunctive celecoxib for schizophrenia: A meta-analysis of randomized, double- blind, placebo-controlled trials. J Psychiatr Res. 2017;20:139-146. doi:10.1016/j.jpsychires.2017.04.00426Low2013Weiser M, Zamora D, Levi L, et al. Adjunctive Aspirin vs Placebo in Patients With Schizophrenia: Results of Two Randomized Controlled Trials. Schizophr Bull. 2021;47(4):1077-1087.8Moderate	s		Common IE do Witto L Dogomonn M									
2012drugs in schizophrenia: ready for practice or a good start? A meta-analysis. J Clin Psychiatry. 2012;73(4):414-419. doi:10.4088/JCP.10r0682314LowNitta M, Kishimoto T, Müller N, et al. Adjunctive use of nonsteroidal anti- inflammatory drugs for schizophrenia: a meta-analytic investigation of randomized controlled trials. Schizophr Bull. 2013;39(6):1230-1241. doi:10.1093/schbul/sbt07014Low2013Mitta M, Kishimoto T, Müller N, et al. Adjunctive use of nonsteroidal anti- inflammatory drugs for schizophrenia: a meta-analytic investigation of randomized controlled trials. Schizophr Bull. 2013;39(6):1230-1241. doi:10.1093/schbul/sbt07026Low2013Zheng W, Cai DB, Yang XH, et al. Adjunctive celecoxib for schizophrenia: A meta-analysis of randomized, double- blind, placebo-controlled trials. J Psychiatr Res. 2017;92:139-146. doi:10.1016/j.jpsychires.2017.04.0048Moderate2021Weiser M, Zamora D, Levi L, et al. Adjunctive Aspirin vs Placebo in Patients With Schizophrenia: Results of Two Randomized Controlled Trials. Schizophr Bull. 2021;47(4):1077-1087.8Moderate												
2012or a good start? A meta-analysis. J Clin Psychiatry. 2012;73(4):414-419. doi:10.4088/JCP.10r0682314LowNitta M, Kishimoto T, Müller N, et al. Adjunctive use of nonsteroidal anti- inflammatory drugs for schizophrenia: a meta-analytic investigation of randomized controlled trials. Schizophr Bull. 2013;39(6):1230-1241. doi:10.1093/schbul/sbt07014Low2013Reta-analytic investigation of randomized controlled trials. Schizophr Bull. 2013;39(6):1230-1241. doi:10.1093/schbul/sbt07026Low2017Zheng W, Cai DB, Yang XH, et al. Adjunctive celecoxib for schizophrenia: A meta-analysis of randomized, double- blind, placebo-controlled trials. J Psychiatr Res. 2017;92:139-146. doi:10.1016/j.jpsychires.2017.04.0048Moderate2021Weiser M, Zamora D, Levi L, et al. Adjunctive Aspirin vs Placebo in Patients With Schizophrenia: Results of Two Randomized Controlled Trials. Schizophr Bull. 2021;47(4):1077-1087.8Moderate												
doi:10.4088/JCP.10r0682314LowNitta M, Kishimoto T, Müller N, et al. Adjunctive use of nonsteroidal anti- inflammatory drugs for schizophrenia: a meta-analytic investigation of randomized controlled trials. Schizophr Bull. 2013;39(6):1230-1241. doi:10.1093/schbul/sbt07026Low2017Zheng W, Cai DB, Yang XH, et al. Adjunctive celecoxib for schizophrenia: A meta-analysis of randomized, double- blind, placebo-controlled trials. J Psychiatr Res. 2017;92:139-146. doi:10.1016/j.jpsychires.2017.04.00426Low2021Weiser M, Zamora D, Levi L, et al. Adjunctive Aspirin vs Placebo in Patients With Schizophrenia: Results of Two Randomized Controlled Trials. Schizophr Bull. 2021;47(4):1077-1087.8Moderate		2012	e									
Nitta M, Kishimoto T, Müller N, et al. Adjunctive use of nonsteroidal anti- inflammatory drugs for schizophrenia: a meta-analytic investigation of randomized controlled trials. Schizophr Bull. 2013;39(6):1230-1241. doi:10.1093/schul/sbt07026LowZheng W, Cai DB, Yang XH, et al. Adjunctive celecoxib for schizophrenia: A meta-analysis of randomized, double- blind, placebo-controlled trials. J Psychiatr Res. 2017;92:139-146. doi:10.1016/j.jpsychires.2017.04.0048Moderate2021Weiser M, Zamora D, Levi L, et al. Adjunctive Aspirin vs Placebo in Patients With Schizophrenia: Results of Two Randomized Controlled Trials. Schizophr Bull. 2021;47(4):1077-1087.8Moderate			Psychiatry. 2012;73(4):414-419.									
Adjunctive use of nonsteroidal anti- inflammatory drugs for schizophrenia: a meta-analytic investigation of randomized controlled trials. Schizophr Bull. 2013;39(6):1230-1241. doi:10.1093/schbul/sbt07026LowZheng W, Cai DB, Yang XH, et al. Adjunctive celecoxib for schizophrenia: A meta-analysis of randomized, double- blind, placebo-controlled trials. J Psychiatr Res. 2017;92:139-146. doi:10.1016/j.jpsychires.2017.04.0048ModerateWeiser M, Zamora D, Levi L, et al. Adjunctive Aspirin vs Placebo in Patients With Schizophrenia: Results of Two Randomized Controlled Trials. Schizophr Bull. 2021;47(4):1077-1087.8Moderate										1	4	Low
2013inflammatory drugs for schizophrenia: a meta-analytic investigation of randomized controlled trials. Schizophr Bull. 2013;39(6):1230-1241. doi:10.1093/schbul/sbt07026Low2017Zheng W, Cai DB, Yang XH, et al. Adjunctive celecoxib for schizophrenia: A meta-analysis of randomized, double- blind, placebo-controlled trials. J Psychiatr Res. 2017;92:139-146. doi:10.1016/j.jpsychires.2017.04.0048Moderate2021Weiser M, Zamora D, Levi L, et al. Adjunctive Aspirin vs Placebo in Patients With Schizophrenia: Results of Two Randomized Controlled Trials. Schizophr Bull. 2021;47(4):1077-1087.8Moderate												
2013meta-analytic investigation of randomized controlled trials. Schizophr Bull. 2013;39(6):1230-1241. doi:10.1093/schbul/sbt07026Low2017Zheng W, Cai DB, Yang XH, et al. Adjunctive celecoxib for schizophrenia: A meta-analysis of randomized, double- blind, placebo-controlled trials. J Psychiatr Res. 2017;92:139-146. doi:10.1016/j.jpsychires.2017.04.0048Moderate2021Weiser M, Zamora D, Levi L, et al. Adjunctive Aspirin vs Placebo in Patients With Schizophrenia: Results of Two Randomized Controlled Trials. Schizophr Bull. 2021;47(4):1077-1087.8Image: Control of the schizophrenia to the schizop												
controlled trials. Schizophr Bull. 2013;39(6):1230-1241. doi:10.1093/schbul/sbt07026Low2017Zheng W, Cai DB, Yang XH, et al. Adjunctive celecoxib for schizophrenia: A meta-analysis of randomized, double- blind, placebo-controlled trials. J Psychiatr Res. 2017;92:139-146. doi:10.1016/j.jpsychires.2017.04.0048Moderate2021Weiser M, Zamora D, Levi L, et al. Adjunctive Aspirin vs Placebo in Patients With Schizophrenia: Results of Two Randomized Controlled Trials. Schizophr Bull. 2021;47(4):1077-1087.8Moderate		2012										
2013;39(6):1230-1241. doi:10.1093/schbul/sbt07026Low2017Zheng W, Cai DB, Yang XH, et al. Adjunctive celecoxib for schizophrenia: A meta-analysis of randomized, double- blind, placebo-controlled trials. J Psychiatr Res. 2017;92:139-146. doi:10.1016/j.jpsychires.2017.04.0048Moderate2021Weiser M, Zamora D, Levi L, et al. Adjunctive Aspirin vs Placebo in Patients With Schizophrenia: Results of Two Randomized Controlled Trials. Schizophr Bull. 2021;47(4):1077-1087.8Image: Control of the schizophr blind, blind,		2013										
doi:10.1093/schbul/sbt07026LowZheng W, Cai DB, Yang XH, et al. Adjunctive celecoxib for schizophrenia: A meta-analysis of randomized, double- blind, placebo-controlled trials. J Psychiatr Res. 2017;92:139-146. doi:10.1016/j.jpsychires.2017.04.0048Moderate2021Weiser M, Zamora D, Levi L, et al. Adjunctive Aspirin vs Placebo in Patients With Schizophrenia: Results of Two Randomized Controlled Trials. Schizophr Bull. 2021;47(4):1077-1087.8Image: Control of the second seco												
Zheng W, Cai DB, Yang XH, et al. Adjunctive celecoxib for schizophrenia: A meta-analysis of randomized, double- blind, placebo-controlled trials. J Psychiatr Res. 2017;92:139-146. doi:10.1016/j.jpsychires.2017.04.004 Weiser M, Zamora D, Levi L, et al. Adjunctive Aspirin vs Placebo in Patients With Schizophrenia: Results of Two Randomized Controlled Trials. Schizophr Bull. 2021;47(4):1077-1087.										2	6	Low
2017meta-analysis of randomized, double- blind, placebo-controlled trials. J Psychiatr Res. 2017;92:139-146. doi:10.1016/j.jpsychires.2017.04.0048ModerateWeiser M, Zamora D, Levi L, et al. Adjunctive Aspirin vs Placebo in Patients With Schizophrenia: Results of Two Randomized Controlled Trials. Schizophr Bull. 2021;47(4):1077-1087.8												
2017 blind, placebo-controlled trials. J Psychiatr Res. 2017;92:139-146. doi:10.1016/j.jpsychires.2017.04.004 8 Moderate 2021 Weiser M, Zamora D, Levi L, et al. Adjunctive Aspirin vs Placebo in Patients With Schizophrenia: Results of Two Randomized Controlled Trials. Schizophr Bull. 2021;47(4):1077-1087. 8 Moderate												
blind, placebo-controlled trials. J Psychiatr 8 Res. 2017;92:139-146. 8 doi:10.1016/j.jpsychires.2017.04.004 8 Weiser M, Zamora D, Levi L, et al. Adjunctive Aspirin vs Placebo in Patients With Schizophrenia: Results of Two Randomized Controlled Trials. Schizophr Bull. 2021;47(4):1077-1087. 9		2017										
doi:10.1016/j.jpsychires.2017.04.0048ModerateWeiser M, Zamora D, Levi L, et al. Adjunctive Aspirin vs Placebo in Patients With Schizophrenia: Results of Two Randomized Controlled Trials. Schizophr Bull. 2021;47(4):1077-1087.8Image: Control of the second secon												
2021 Weiser M, Zamora D, Levi L, et al. Adjunctive Aspirin vs Placebo in Patients With Schizophrenia: Results of Two Randomized Controlled Trials. Schizophr Bull. 2021;47(4):1077-1087.											Q	Moderate
2021 Adjunctive Aspirin vs Placebo in Patients With Schizophrenia: Results of Two Randomized Controlled Trials. Schizophr Bull. 2021;47(4):1077-1087.	-										Ō	wouerate
2021 With Schizophrenia: Results of Two Randomized Controlled Trials. <i>Schizophr</i> <i>Bull</i> . 2021;47(4):1077-1087.												
2021 Randomized Controlled Trials. Schizophr Bull. 2021;47(4):1077-1087.		2024										
		2021										
doi:10.1093/schbul/sbaa198 4 Low												
			doi:10.1093/schbul/sbaa198							4		Low

Supplementary material 3. Methodology Checklist : Controlled Trials.

6	Methodology Checklist : Cor	ntrolled 7	Frials	
Study	i N y identification (<i>Include author, title, year of pu</i>	blication jour	nal titla n	
	y identification (<i>include author, title, year of pu</i>	Silcation, jour	nai ilie, p	ayes)
Guid	eline topic:	Key Questic	on No:	Reviewer:
Befo	re completing this checklist, consider:			
1	. Is the paper a randomised controlled trial doubt, check the study design algorithm avail have the correct checklist. If it is a controlle 1.4 are not relevant, and the study cannot be	lable from Sl d clinical tria	GN and m I questior	nake sure you
2	. Is the paper relevant to key question? Analyse Intervention Comparison Outcome). IF NO R complete the checklist.			
Reas spec	oon for rejection: 1. Paper not relevant to key qι ify):	estion \Box 2.	Other rea	ason 🗆 (please
Sect	ion 1: Internal validity			
In a s	well conducted RCT study		Does this	s study do it?
1.1	The study addresses an appropriate and clea question.	rly focused	Yes □ Can't say □	No 🗆 Y
1.2	The assignment of subjects to treatment g randomised.	proups is	Yes □ Can't say □	No 🗆 Y
1.3	An adequate concealment method is used.		Yes □ Can't say □	No 🗆 Y
1.4	The design keeps subjects and investigators about treatment allocation.	'blind'	Yes □ Can't say □	No 🗆 Y
1.5	The treatment and control groups are similar a of the trial.	at the start	Yes □ Can't say	No 🗆 y 🗆
1.6	The only difference between groups is the tre under investigation.	atment	Yes □ Can't say □	No 🗆 Y
1.7	All relevant outcomes are measured in a stan and reliable way.	dard, valid	Yes □ Can't say □	No 🗆 Y
1.8	What percentage of the individuals or clusters into each treatment arm of the study dropped the study was completed?			
1.9	All the subjects are analysed in the groups to were randomly allocated (often referred to as treat analysis).		Yes □ Can't say □	No □ y Does not apply □

1.1 0	Where the study is carried out at more than one site, results are comparable for all sites.	Yes □ Can't say □	No □ Does not apply □

Supplementary material 4. PRISMA Checklist.

Section and Topic	ltem #	Checklist item	Location where item is reported
TITLE			
Title	1	Identify the report as a systematic review.	P1
ABSTRACT			
Abstract	2	See the PRISMA 2020 for Abstracts checklist.	P3
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of existing knowledge.	P4-P5
Objectives	4	Provide an explicit statement of the objective(s) or question(s) the review addresses.	P5
METHODS			
Eligibility criteria	5	Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.	SM1
Information sources	6	Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Specify the date when each source was last searched or consulted.	SM1
Search strategy	7	Present the full search strategies for all databases, registers and websites, including any filters and limits used.	SM1
Selection process	8	Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process.	P5+SM1
Data collection process	9	Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process.	P5+SM1
Data items	10a	List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect.	P5-P6+SM1
	10b	List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information.	P5-P6+SM1
Study risk of bias assessment	11	Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process.	SM1
Effect measures	12	Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results.	SM1
Synthesis methods	13a	Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item #5)).	SM1
	13b	Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions.	SM1
	13c	Describe any methods used to tabulate or visually display results of individual studies and syntheses.	SM1
	13d	Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used.	SM1
	13e	Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression).	P5/6+SM1
	13f	Describe any sensitivity analyses conducted to assess robustness of the synthesized results.	P5/6+SM1

Section and Topic	ltem #	Checklist item	Location where item is reported
Reporting bias assessment	14	Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases).	SM1
Certainty assessment	15	Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome.	SM1
RESULTS			
Study selection	16a	Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included in the review, ideally using a flow diagram.	P6+SM2
	16b	Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded.	P6+SM2
Study characteristics	17	Cite each included study and present its characteristics.	P6+SM2
Risk of bias in studies	18	Present assessments of risk of bias for each included study.	SM1
Results of individual studies	19	For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (e.g. confidence/credible interval), ideally using structured tables or plots.	NA
Results of	20a	For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies.	P6-13+SM2
syntheses	20b	Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect.	P6-13+SM2
	20c	Present results of all investigations of possible causes of heterogeneity among study results.	P6-13+SM2
	20d	Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.	P6-13+SM2
Reporting biases	21	Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed.	P6-13+SM2
Certainty of evidence	22	Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed.	P6-13+SM2
DISCUSSION			
Discussion	23a	Provide a general interpretation of the results in the context of other evidence.	P13-17
	23b	Discuss any limitations of the evidence included in the review.	P13-17
	23c	Discuss any limitations of the review processes used.	P13-17
	23d	Discuss implications of the results for practice, policy, and future research.	P13-17
OTHER INFORMA	TION		
Registration and	24a	Provide registration information for the review, including register name and registration number, or state that the review was not registered.	
protocol	24b	Indicate where the review protocol can be accessed, or state that a protocol was not prepared.	
	24c	Describe and explain any amendments to information provided at registration or in the protocol.	
Support	25	Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review.	P18

Section and Topic	ltem #	Checklist item	Location where item is reported
Competing interests	26	Declare any competing interests of review authors.	P18
Availability of data, code and other materials	27	Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all analyses; analytic code; any other materials used in the review.	

From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. doi: 10.1136/bmj.n71 For more information, visit: <u>http://www.prisma-statement.org/</u> Supplemental material

Suppleme	entary ma	terial 5. Characte	ristics of the	e 63 randor	nized	controlle	ed tria	als (RCTs	s) with t	heir risk	of bias.		
Study ID	Country	Study population	Setting	Coinitiation or augmentation (antipsychotic treatment, flexible/fixed doses)	N	Dose (mg/day)	Durat ion (wee ks)	Positive symptom s PANSS-P	Negative symptom s PANSS-N	General psychopa thology PANSS-G	Total psychotic symptoms PANSS-T	Cognition	Risk of bias
N-acetyl-cyst	eine (NAC). 8	RCTs. N total=523, N NAC	=258, N placebo	b=265									
Early-phase schiz	zophrenia	T		1		1			1	[1	
Conus et al. (2018)	Switzerland	Early psychosis	Outpatients	Augmentation (FGA + SGA, flexible dose)	61 (31 vs 30)	2700	26	ns	ns	ns	ns	+/ns	Low
Breier et al. (2018)	USA	Early schizophrenia	Outpatients	Augmentation (FGA + SGA, flexible dose)	32 (14 vs 18)	600-3600 titrate	52	ns	+	ns	+	ns	Moderate
Davis et al. (2014)	USA	Early and chronic schizophrenia	Outpatients	Augmentation (FGA + SGA, unspecified flexible dose)	17 (8 vs 9)	1200	8	ns	ns	ns	ns	ns	Moderate
Chronic schizoph	renia												
Berk et al. (2008)	Australia	Chronic schizophrenia	Outpatients	Augmentation (FGA + SGA, flexible dose)	139 (68 vs 71)	2000	24	ns	+	+	+	NA	Moderate
Rapado-Castro et al. (2017)	Australia	Chronic schizophrenia	Outpatients	Augmentation (FGA + SGA, flexible dose)	32 (15 vs 17)	2000	24	NA	NA	NA	NA	+/ns	Moderate
Sepehrmanesh et al. (2018)	Iran	Chronic schizophrenia	Outpatients	Augmentation (FGA + SGA + anti-cholinergic agents, fixed dose)	79 (40 vs 39)	1200	12	+	+	+	+	+/ns	Low
Acute phase													
Zhang et al. (2015)	China	First episode	NA	Coinitiation (risperidone)	121 (61 vs 60)	600	8	+	+	NA	+	NA	High
Farokhnia et al. (2013)	Iran	Chronic schizophrenia	Inpatients	Coinitiation (risperidone flexible dose)	42 (21 vs 21)	1000-2000 titrate	8	ns	+	ns	+	NA	Low

Sarcosine, 6 F	CTs. N total=	211. N sarcosine= 104. N pla	acebo= 107										
Chronic schizoph	nrenia												
Tsai et al. 2004	Taiwan	Chronic schizophrenia Comorbid major depressive episode excluded	In and outpatients	Augmentation (FGA + SGA, fixed dose, stable at least for 3 months, one patient untreated)	36 (16 vs 20)	2000	6	+	+	+	+	NA	High
Lane et al. 2010	Taiwan	Unremitted chronic schizophrenia (PANSS>60) 18-60 years without abnormal biochemical test History of substance abuse, excluded	Inpatients	Augmentation (SGA, fixed dose, stable at least for 3 months)	35 (19 vs 16)	2000	6	NA	+	NA	+	NA	Moderate
Lin et al. 2015	Taiwan	Unremitted chronic schizophrenia (PANSS>60) 18-60 years without abnormal biochemical test History of substance abuse, excluded	Inpatients	Augmentation (SGA, fixed dose, stable at least for 2 months)	32 (16 vs 16)	2000	12	ns	ns	ns	ns	+/ns	Moderate
Strzelecki et al. 2015	Poland	Schizophrenia with dominant negative symptoms, acute psychosis and suicidal ideations excluded 18–60 years	Outpatients	Augmentation (FGA + SGA excluding clozapine, fixed dose, stable at least for 3 months)	50 (25 vs 25)	2000	24	NA	+	NA	+	NA	Moderate
Treatment-resista	nt schizophrenia	-	•	•	,				•	,	•		•
Lane et al. (2006)	Taiwan	Resistant chronic schizophrenia (PANSS>70) Comorbid major depressive episode excluded	Inpatients	Augmentation (Clozapine, fixed dose, stable for at least 3 months)	20 (10 vs 10)	2000	6	ns	ns	ns	ns	ns	High
Acute phase													
Lane et al. (2005)	Taiwan	Chronic schizophrenia (PANSS>60)	Inpatients	Coinitiation (Risperidone, flexible dose)	38 (18 vs 20)	2000	6	ns	+	+	+	NA	Moderate

		18-60 years without abnormal biochemical test History of substance abuse and smokers excluded											
Early-phase schiz		ll=583, N minocycline=298, N	N placebo=28										
Chaudhry et al. (2012)	Brazil & Pakistan	Early schizophrenia spectrum disorder (≤5 years of illness duration) Stable medication > 4 weeks	In- and outpatients	Augmentation (SGA+FGA unspecified, flexible dose unspecified)	94 (46 vs 48)	50-200 titrate within 8 weeks	52	ns	+	ns	ns	ns	Moderate
Liu et al. (2014)	China	Early Schizophrenia (≤5 years of illness duration)	Outpatients (unspecified)	Augmentation (Risperidone, fixed dose)	63 (30 vs 33)	200	16	ns	+	ns	+	ns	Moderate
Deakin et al. (2018)	UK	First episode schizophrenia, schizoaffective or schizophreniform disorder (≤5 years of illness duration) PANSS positive items >2 (P1 delusions, P2 conceptual disorganisation, P3 hallucinatory behaviour, or P6 suspiciousness)	Outpatients	Augmentation (FGA and SGA, fixed dose)	89 (41 vs 48)	300 (200 for 2 weeks, then 300)	52	ns	ns	ns	ns	NA	Low
Chronic schizoph	renia			I							•		
Khodaie- Ardakani et al. (2014)	Iran	Chronic schizophrenia >2 years of illness duration stable dose of risperidone for > 8 weeks clinically stable for > 4 weeks patients with depression excluded	Outpatients	Augmentation (Risperidone, flexible dose)	38 (20 vs 18)	200 (100 for 1 week then 200)	8	ns	+	+	+	NA	Low
Resistant schizop	ohrenia										1		
Kelly et al. (2015)	USA	Chronic schizophrenia or schizoaffective disorder	In- and outpatients	Augmentation (clozapine, fixed dose)	50 (27 vs 23)	200	10	ns	ns	ns	ns	ns	Low

		clozapine for >6 months, >200 mg/day, >350 ng/ml (BPRS >= 45 OR CGI >= 4) AND BPRS-P > 8				(100 for 1 week, then 200)							
Acute phase													
Levkovitz et al. (2010)	Israel	Early schizophrenia (≤5 years of first antipsychotic exposure) PANSS > 60 Antipsychotic initiation =< 14 days Exclusion of patients with > 25% improvement after the placebo lead-in phase	In- and outpatients (unspecified)	Coinitiation (SGA including clozapine, flexible dose)	12 (13 vs 8)	200	22 Prece eded by a 2 week s lead- in phase	ns	+ (SANS) / ns (PANSS- N)	ns	ns	+/-	High
Zhang et al. (2018) (3 arms)	China	Chronic schizophrenia PANSS-N > 20; at least one PANSS-N item >= 4; PANSS- N > PANSS-P; PANSS-P, duration of illness from 2-10 years antipsychotic free for >= 2 weeks	In- and outpatients	Coinitiation (Risperidone, flexible dose 3 to 6 mg)	37 (18 (200m g/day) vs 19) 39 (20(10 0mg/ day) vs 19)	200	12	ns	+ ns	Ns	ns	NA	Low
Weiser et al. (2019)	Romania & Moldova	Chronic schizophrenia or schizoaffective disorder Use of antipsychotics for >= 2 weeks (>= 2 episodes, duration of illness > 6 months, PANSS-P P1, P2, P3, P6 >= 4 and/or PANSS-N >=18 and CGI >= 4)	In- and outpatients	Coinitiation (SGA+FGA unspecified, flexible dose unspecified)	171 (83 vs 88)	200	16	ns	ns	ns	ns	ns	Moderate
PUFAS, 14 RC	Ts, N total=80	9, N PUFA=432, N placebo=	377										
Chronic schizop	hrenia												

Fenton et al., (2001)	USA	Chronic schizophrenia Presence of significant residual symptoms (defined as either one or more positive and/or negative symptom scores > 4 or PANSS total scores greater than 45 with a score of three or greater on at least three positive or negative items)	Outpatients	Augmentation (FGA or SGA, fixed dose)	75 (37 vs 38)	EPA 3000	16	ns	ns	ns	ns	ns	Moderate
Peet et al., 2001 (UK)	United Kingdom	Chronic schizophrenia PANSS score >40	Outpatients	Augmentation (FGA or SGA, fixed dose)	29 (15 EPA vs 14)	EPA 2000	12	+	NA	NA	+	NA	Moderate
Peet et al., 2001 (India)	India	Chronic schizophrenia PANSS score >40	Outpatients	Augmentation (FGA or SGA, fixed dose)	30 (16 DHA vs 14)	DHA 2000	12	ns	NA	NA	ns	NA	High
Emsley et al., 2002	South Africa	Chronic schizophrenia PANSS score>50	Outpatients	Augmentation (FGA or SGA, fixed dose)	39 (19 vs 20)	EPA 3000	12	ns	ns	+	+	NA	Low
Peet et al., 2002	United Kingdom	Chronic schizophrenia PANSS score>50 Illness duration<20years	Outpatients	Augmentation (FGA or SGA, fixed dose)	57 (29 vs 28)	EPA 1000	12	ns	ns	ns	ns	NA	Low
					52(24 vs 28)	EPA 2000	12	ns	ns	ns	ns	NA	Low
					53 (25 vs 28)	EPA 4000	12	ns	ns	ns	ns	NA	Low
Emsley et al., 2006	South Africa	Chronic schizophrenia with tardive dyskinesia	Outpatients	Augmentation (FGA, fixed doses)	77 (39 vs 38)	EPA 2000	12	NA	NA	NA	ns	NA	Low
Bošković et al., 2016	Slovenia	Chronic schizophrenia (illness duration≥3 years)	Outpatients	Augmentation (Haloperidol, flexible dose)	20 (9 vs 11)	EPA 396/ DHA 264	16	ns	ns	ns	ns	NA	High
Acute phase													
Pawelczyk et al., 2016	Poland	First episode	Inpatients	Coinitiation (sulpiride or SGA, flexible dose)	71 (36 vs 35)	EPA 1320/ DHA 880	26	ns	ns	+	+	NA	Low

Berger et al., 2007	Australia	First episode At least one psychotic symptom daily for more than 1 week (delusions, hallucinations, disorder of thinking and/or speech other than simple acceleration or retardation, and disorganized, bizarre, or markedly inappropriate behavior).	In and outpatients	Coinitiation (SGA, flexible dose)	69 (35 vs 34)	EPA2000	12	ns	ns	ns	ns	NA	Moderate
Robinson et al., 2019, Szeszko et al., 2021	USA	Early schizophrenia (n=46) or bipolar I with psychosis (n=4); (treated <2years) Current BPRS positive symptoms rated ≥4 (moderate) on one or more of: conceptual disorganization, grandiosity, hallucinatory behavior, unusual thought content	Inpatients	Coinitiation (risperidone, flexible dose)	24 (12 vs 12)	EPA 740/ DHA 400	16	ns	ns	+ (depressi on- anxiety)	ns	+/ns	Moderate
Bentsen et al., 2013	Norway	Chronic schizophrenia	Inpatients	Coinitiation (FGA or SGA<3 weeks, flexible doses)	74(36 vs 38)	EPA 2000	16	+ (low PUFA)	ns	ns	+ (low PUFA)	NA	Low
Manteghiy et al., 2008	Iran	Chronic schizophrenia	Inpatients	Coinitiation (Risperidone flexible dose)	85 (42 vs 43)	EPA 1080/ DHA 720	6	ns	ns	ns	ns	NA	Moderate
Jamilian et al., 2014	Iran	Chronic schizophrenia PANSS score >60	Inpatients/O utpatients (Unspecified)	Coinitiation (olanzapine, risperidone or clozapine, flexible dose)	60 (30 vs 30)	EPA 1000	8	ns	ns	+	+	NA	High
Qiao et al., 2018	China	Chronic schizophrenia in the first two weeks after hospitalization PANSS score >50	Inpatients	Coinitiation (FGA or SGA, flexible dose)	50 (28 vs 22)	EPA 540/ DHA 360	12	NA	NA	NA	ns	NA	High

Estrogens. Nir	ne RCTs (one v	with three arms), N total=6	77. N estrogei	ns=383. N place	bo=294								
Chronic schizoph	renia	T	1	T	I			I		I	1		
Ko et al. 2006	South Korea	-Acute or stabilized -Chronic schizophrenia, schizoaffective or schizophreniform disorder Childbearing aged women (mean aged 33 years for estrogen group)	Inpatients	Augmentation (SGA, fixed doses)	28 (14 vs 14)	0.625 mg (conjugate d estrogen with 2.5 mg of medroxyp rogestero ne acetate) (per os)	8	NA	+	+	NA	+/-	Low
Kulkarni et al. 2008	Australia	-Acute or stabilized phase -Chronic schizophrenia, schizoaffective or schizophreniform disorder Childbearing aged women (mean age 33 years in both groups)	In- and outpatients	Augmentation (FGA or SGA, fixed doses unspecified)	87 (51 vs 36)	0.1 mg Transder mal Estradiol	4	÷	ns	÷	+	NA	Low
Kulkarni et al. 2011	Australia	- Middle-aged men -Chronic schizophrenia, schizoaffective disorder and 8 patients with first episode -PANSS>60	In- and outpatients	Augmentation, SGA (fixed doses unspecified) + 7 on mood stabilizer	51 (25 vs 26)	2 mg Estradiol valerate (per os)	2	ns	ns	+	ns	NA	Moderate
Ghafari et al. 2013	Iran	Chronic schizophrenia (institutionalized) Childbearing aged women (mean age 34 years in both groups)	Inpatients	Augmentation (FGA or SGA, fixed/flexible dose unspecified)	32 (16 vs 16)	0.625 mg Conjugate d Estrogens (per os)	4	+	+	+	+	NA	High
Kulkarni et al. 2014	Australia	Chronic schizophrenia or schizoaffective disorder (PANSS>60) Childbearing aged women Aged 18-45 (mean 35 years)	In- and outpatients	Augmentation (FGA or SGA, fixed doses)	121(5 9 vs 62)	0.1 mg Transder mal Estradiol	8	+	ns	+	+	ns	Low

					124 (62 vs 62)	0.2 mg Transder mal Estradiol	8	+	ns	+	+	ns	Low
Weiser et al. 2019	Republic of Moldova	Premenopausal women aged 19-46 years (median age, 38 years; interquartile range, 34-42 years)	In-and outpatients	Augmentation (FGA or SGA, fixed doses)	188 (95 vs 93)	0.2 mg Transder mal Estradiol	8	+	+	+	+	ns	Low
Acute phase													
Kulkarni et al, 2001	Australia	Chronic middle-aged schizophrenia or schizoaffective or schizophreniform disorder Childbearing aged women (mean age 33 years in the estrogen group)	Not specified	Coinitiation (risperidone, flexible dose)	24 (12 vs 12)	0.05 mg Transderm al Estradiol	4	ns	ns	ns	ns	NA	Moderate
					24 (12 vs 12)	0.1 mg Transderm al Estradiol	4	+	+	+	+	NA	Moderate
Akhondzadeh et al. 2003	Iran	Untreated Chronic schizophrenia (PANSS>60) Childbearing aged women (mean age 32 years in the estrogen group)	Inpatients	Coinitiation (haloperidol 15 mg, fixed dose)	32 (16 vs 16)	0.05 mg Ethynyl Estradiol (per os)	8	+	+	+	+	NA	Low
Louza et al. 2004	Brazil	Childbearing aged women with schizophrenia in active phase (mean age 34 years in the estrogen group)	Not specified	Augmentation (haloperidol, fixed doses)	40 (21 vs 19)	0.625 mg conjugate d estrogen (per os)	4	ns	ns	ns	ns	NA	Moderate
		r modulator (SERM) (Raloxi	fene). 9 RCTs.	N total=552. N	raloxifer	e=275. N pl	lacebo=	277					
Chronic schizop	nrenia							1					
Kulkarni et al 2010	Australia	SZ, schizoaffective or schizophreniform disorder (PANSS>60) Peri or postmenopausal women	Not specified	Augmentation FGA or SGA (flexible doses unspecified)	26 (13 vs 13)	120	12	+	ns	+	ns	NA	Moderate

Usall et al. 2011	Spain	SZ Postmenopausal women with at least one item score > 4 on the PANSS negative factor Stable dose of antipsychotics in the month before inclusion	In- (non acute) and outpatients	Augmentation (FGA or SGA, fixed doses)	32 (15 vs 17)	60	12	+	+	+	+	NA	Low
Weickert et al, 2015	Australia	Chronic SZ or schizoaffective disorders (both sexes) (mean PANSS ~60+/-18)	Outpatients	Augmentation (FGA or SGA flexible doses unspecified)	79 (40 vs 39)	120	6 (paral lel) 13 (cross - over)	ns	ns	ns	NA	+ / ns	Low
Kulkarni et al. 2016 Gurvich et al. 2019	Australia	SZ or schizoaffective peri or post-menopausal middle- aged Women PANSS > 60 Stable dose of antipsychotics for at least 4 months	In and outpatients	Augmentation (FGA or SGA, fixed doses)	56 (26 vs 30)	120 120	12 12	ns NA	ns NA	+ NA	+ NA	ns ns	Low
Usall et al. 2016 Huerta-Ramos et al. 2020	Spain	SZ Post-menopausal middle- aged women Chronic SZ with significant negative symptoms (at least one negative symptom score > 4 on the PANSS)	In- and outpatients	Augmentation (FGA or SGA, fixed doses)	57 (27 vs 30) 58 (31 vs 27)	60 60	24 24	ns NA	+ NA	+ NA	+ NA	NA ns	Moderate
Weiser et al. 2017	Romania and Republic of Moldova	SZ Post-menopausal women CGI score≥4 OR score >= 4 on 2 of these PANSS items: delusions, hallucinations, conceptual disorganization, suspicion/persecution OR PANSS negative score >= 18 Antipsychotics for at least 2 weeks	In- and outpatients (13/187)	Augmentation (FGA or SGA, flexible doses unspecified)	174 (90 vs 84)	120	16	-	-	-	-	ns	Low
Vahdani et al. 2020	Iran	SZ Both genders	Not specified	Augmentation (FGA or SGA, fixed doses)	40 (20 vs 20)	60	6	NA	NA	NA	NA	+ / ns	Low
Acute phase													

Kianimehr et al. 2014	Iran	SZ Post-menopausal women Duration of illness > 2 years PANSS > 60	Inpatients	Coinitiation (Risperidone 6 mg/day, fixed dose)	46 (23 vs 23)	120	8	+	ns	ns	ns	NA	Moderate
Khodaie- Ardakani et al. 2015	Iran	SZ Men aged between 18-55 Duration of illness > 2 years PANSS > 60 Patients with depression excluded	Outpatients	Coinitiation (Risperidone 6 mg/day, fixed dose)	42 (21 vs 21)	120	8	ns	+	+	+	NA	Low
Aspirin. Four	RCTs. N total=	424. N aspirin=221. N place	ebo=203										
Mix early-phase	+ chronic schizop	hrenia											
Laan et al. 2010	Netherlands	Schizophrenia or schizoaffective disorder <5 years (+26 patients <10 years), PANSS>60 with score 4 on 2 items, tested for 2 weeks observance before randomization	In and outpatients	Coinitiation (FGA+SGA, fixed dose)	58 (27 vs 31)	1000 (+pantopr azole 40mg)	12	+	ns	ns	+	ns	Moderate
Chronic schizoph	renia	1		1									P
Weiser et al. 2021	Romania (18 sites)/Republi c of Moldova (one site)	Chronic schizophrenia or schizoaffective disorder with at least 2 psychotic episodes or continuous illness≥6months Score≥4 on at least one of the PANSS positive or disorganized items or ≥18 on PANSS negative factor	In- and outpatients	Augmentation (FGA + SGA for at least 2 weeks, flexible dose)	179 (91 vs 88)	1000 (+pantopr azole 40mg)	16	ns	ns	ns	ns	ns	Moderate
Weiser et al. 2021	Romania	Chronic schizophrenia or schizoaffective disorder with at least 2 psychotic episodes or continuous illness≥6months Score≥4 on two or more of the PANSS positive or disorganized items CRP>1mg/L	In- and outpatients	Augmentation (FGA + SGA for at least 2 weeks, flexible dose)	127 (63 vs 64)	1000 (+pantopr azole 40mg)	16	ns	ns	ns	ns	ns	Moderate
Acute phase													

Attari et al. 2017	Iran	Chronic schizophrenia (>2years)	In- and outpatients (unspecified)	Coinitiation (FGA + SGA, fixed dose)	40 (20 vs 20)	325 (+omepraz ole 20mg)	6	+	+	+	+	NA	High
					40 (20 vs 20)	500 (+omepraz ole 20mg)	6	+	+	+	+	NA	High
Celecoxib, Fiv	 /e RCTs. N to1	al=440, N celecoxib=222, N	placebo=218										
Chronic schizop	hrenia or early/o	chronic mix											
Rapaport et al. (2005)	USA	Chronic schizophrenia GAF<60	Outpatients	Augmentation (Olanzapine or risperidone, fixed dose unspecified)	35 (18 vs 17)	400	8	ns	ns	ns	ns	NA	Moderate
Acute phase													
Müller et al. (2010)	Germany	First episode schizophrenia	Inpatients	Coinitiation (Amisulpride, flexible dose)	37 (17 vs 20)	400	6	ns	+	ns	ns	NA	Moderate
Müller et al. (2002)	Germany	First episode and chronic schizophrenia	Inpatients	Coinitiation (Risperidone, flexible dose)	43 (21 vs 22)	400	5	ns	ns	ns	+	NA	Moderate
Rappard and Müller (2004)	USA	Chronic schizophrenia PANSS > 60	Inpatients	Coinitiation (Risperidone, flexible dose)	270 (138 vs 132)	400	11	ns	ns	ns	ns	NA	High
Akhondzadeh et al. (2007)	Iran	Chronic schizophrenia PANSS > 60	Inpatients	Coinitiation (Risperidone, fixed dose 6mg/j)	55 (28 vs 27)	400	8	+	ns	+	+	NA	Low

NA not available. Ns non-significant (p≥0.05). FGA first generation antipsychotics. SGA second-generation antipsychotics. PANSS Positive and Negative Syndrome Scale for Schizophrenia. RCT randomized controlled trials

Supplementary material 6. Detailed risk of bias analysis of the 63 randomized controlled trials (RCTs).

Study ID	Coinitiation or augmentation (antipsychotic treatment, flexible/fixed doses)	1.1 Focused question	1.2 Rando mized assign ment	1.3 Adeq uate conce almen t	1.4 Blindness	1.5 Similar groups at baseli ne	1.6 Only Treatm ent under investi gation	1.7 Valid outcomes	1.8 Percentage of dropouts	1.9 Intention-to- treat analysis	1.10 All sites comparable	Risk of bias
NAC												
Conus et al. (2018)	Augmentation (FGA + SGA, flexible dose)	Y	Y	Y	Y	Y	Y	Y	3.2%	Y	DNA	Low
Breier et al. (2018)	Augmentation (FGA + SGA, flexible dose)	Y	Y	Y	Y	Y	U	Y	46.7%	Y	DNA	Moderate
Davis et al. (2014)	Augmentation (FGA + SGA, unspecified flexible dose)	Y	Y	U	Y	U	U	Y	34.6%	Y	DNA	Moderate
Berk et al. (2008)	Augmentation (FGA + SGA, flexible dose)	Y	Y	Y	Y	Y	U	Y	40.0%	Y	DNA	Moderate
Rapado-Castro et al. (2017)	Augmentation (FGA + SGA, flexible dose)	Y	Y	Y	Y	Y	Y	Y	U	Y	U	Moderate
Sepehrmanesh et al. (2018)	Augmentation (FGA + SGA + anti- cholinergic agents, fixed dose)	Y	Y	Y	Y	N	Y	Y	6.0%	Y	DNA	Low
Zhang et al. (2015)	Coinitiation (risperidone)	Y	Y	U	U	U	U	U	U	U	DNA	High
Farokhnia et al. (2013)	Coinitiation (risperidone flexible dose)	Y	Y	Y	Y	Y	Y	Y	8.7%	Y	DNA	Low
Sarcosine												
Tsai et al. 2004	Augmentation (FGA + SGA, fixed dose, stable at least for 3 months, one patient untreated)	Y	Y	Y	Y	N	Y	Y	5.2%	N	DNA	High
Lane et al. 2010	Augmentation (SGA, fixed dose, stable at least for 3 months)	Y	Y	Y	Y	N	Y	Y	12.5%	N	DNA	Moderate

Lin et al. 2015	Augmentation (SGA, fixed dose, stable at least for 2 months)	Y	Y	Y	Y	Y	Y	Y	23.8%	N	DNA	Moderate
Strzelecki et al. 2015	Augmentation (FGA + SGA excluding clozapine, fixed dose, stable at least for 3 months)	Y	U	Y	Y	Y	Y	Y	U	U	DNA	Moderate
Lane et al. 2006	Augmentation (Clozapine, fixed dose, stable for at least 3 months)	Y	N	Y	Y	Y	Y	Y	0%	DNA	DNA	High
Lane et al. 2005	Coinitiation (Risperidone, flexible dose)	Y	Y	Y	Y	Y	Y	Y	13.7%	Y	DNA	Moderate
Minocycline												
Chaudhry et al. 2012	Augmentation (SGA+FGA unspecified, flexible dose unspecified)	Y	Y	Y	Y	Y	Y	Y	33.3 %	Y	DNA	Moderate
Liu et al. (2014)	Augmentation (Risperidone, fixed dose)	Y	Y	Y	Y	N	Y	Y	31.2 %	Y	Y	Moderate
Deakin et al. (2018)	Augmentation (FGA and SGA, fixed dose)	Y	Y	Y	Y	Y	Y	Y	36.7 %	Y	DNA	Low
Khodaie- Ardakani et al. (2014)	Augmentation (Risperidone, flexible dose)	Y	Y	Y	Y	Y	Y	Y	5%	Y	DNA	Low
Kelly et al. (2015)	Augmentation (clozapine, fixed dose)	Y	Y	Y	Y	Y	Y	Y	4%	Y	U	Low
Levkovitz et al. (2010)	Coinitiation (SGA including clozapine, flexible dose)	Y	Y	U	U	Y	Y	Y	70%	Y	DNA	High
Zhang et al. (2018) (3 arms)	Coinitiation (Risperidone,	Y	Y	Y	Y	Y	Y	Y	22% 26%	Y	DNA	Low

	flexible dose 3 to 6 mg)											
Weiser M. et al. (2019)	Augmentation (SGA+FGA unspecified, flexible dose unspecified)	Y	Y	Y	Y	Y	Y	Y	14.5 %	Y	U	Moderate
PUFAS												
Fenton et al., 2001	Augmentation (FGA or SGA, fixed dose)	Y	U	Y	Y	Y	Y	Y	16.7%	Y	DNA	Moderate
Peet et al., 2001 (UK)	Augmentation (FGA or SGA, fixed dose)	Y	U	U	Y	U	Y	Y	18.2%	Ν	DNA	Moderate
Peet et al., 2001 (India)	Augmentation (FGA or SGA, fixed dose)	Y	U	U	Y	U	Ν	Y	13.3%	Ν	DNA	High
Emsley et al., 2002	Augmentation (FGA or SGA, fixed dose)	Y	Y	Y	Y	Y	Y	Y	2.5%	Y	DNA	Low
Peet et al., 2002 (3 arms)	Augmentation (FGA or SGA, fixed dose)	Y	Y	Y	Y	Y	Y	Y	7.8%	Y	U	Low
Emsley et al., 2006	Augmentation (FGA, fixed doses)	Y	Y	Y	Y	Y	Y	Y	8.3%	Y	DNA	Low
Bošković et al., 2016	Augmentation (Haloperidol, flexible dose)	Y	U	Y	Y	Y	Y	Y	14.7%	U	DNA	High
Pawelczyk et al., 2016	Coinitiation (sulpiride or SGA, flexible dose)	Y	Y	Y	Y	Y	Y	Y	8.4%	Y	DNA	Low
Berger et al., 2007	Coinitiation (SGA, flexible dose)	Y	Y	Y	Y	Y	N	Y	13.8%	Y	DNA	Moderate
Robinson et al., 2019, Szeszko et al., 2021	Coinitiation (risperidone, flexible dose)	Y	Y	Y	Y	Y	Y	Y	30%	Y	DNA	Moderate
Bentsen et al., 2013	Coinitiation (FGA or SGA<3 weeks, flexible doses)	Y	Y	Y	Y	U	Y	Y	25.7%	Y	U	Low
Manteghiy et al., 2008	Coinitiation (Risperidone flexible dose)	Y	Y	U	U	Y	U	Y	24.7%	N	DNA	Moderate

Jamilian et al., 2014	Coinitiation (olanzapine, risperidone or clozapine, flexible	Y	U	U	U	U	N	Y	U	N	DNA	High
	dose)											
Qiao et al., 2018	Coinitiation (FGA or SGA, flexible dose)	Y	U	U	U	Y	Ν	Y	48%	N	DNA	High
Estrogens												
Ko et al. 2006	Augmentation (SGA, fixed doses)	Y	Y	Y	Y	Y	Y	Y	0	Y	DNA	Low
Kulkarni et al. 2008	Augmentation (FGA or SGA, fixed doses unspecified)	Y	Y	Y	Y	Y	Y	Y	14.7%	U	DNA	Low
Kulkarni et al. 2011	Augmentation, SGA (fixed doses unspecified) + 7 on mood stabilizer	Y	Y	U	Y	Y	Y	Y	3.8%	U	DNA	Moderate
Ghafari et al. 2013	Augmentation (FGA or SGA, fixed/flexible dose unspecified)	Y	Y	U	Y	Y	Y	Y	0	Y	DNA	High
Kulkarni et al. 2014 (3 arms)	Augmentation (FGA or SGA, fixed doses)	Y	Y	Y	Y	Y	Y	Y	2.5%	Y	DNA	Low
Weiser et al. 2019	Augmentation (FGA or SGA, fixed doses)	Y	Y	Y	Y	Y	Y	Y	6%	Y	DNA	Low
Kulkarni et al, 2001 (3 arms)	Coinitiation (risperidone, flexible dose)	Y	Y	Y	Y	Y	Y	Y	0	Y	DNA	Moderate
Akhondzadeh et al. 2003	Coinitiation (haloperidol 15 mg, fixed dose)	Y	Y	U	Y	Y	Y	Y	0	Y	DNA	Low
Louza et al. 2004	Augmentation (haloperidol, fixed doses)	Y	U	U	U	Y	Y	Y	0	Y	DNA	Moderate
SERM												

	Augmentation FGA											
Kulkarni et al 2010	or SGA (flexible doses unspecified)	Y	Y	Y	Y	Y	Y	Y	0 %	Y	DNA	Moderate
Usall et al. 2011	Augmentation (FGA or SGA, fixed doses)	Y	Y	Y	Y	Y	Y	Y	0 %	Y	DNA	Low
Weickert et al, 2015	Augmentation (FGA or SGA flexible doses unspecified)	Y	Y	Y	Y	Y	Y	Y	23.6 %	Y	DNA	Low
Kulkarni et al. 2016 Gurvich et al. 2019	Augmentation (FGA or SGA, fixed doses)	Y	Y	Y	Y	Y	Y	Y	1.8 % U	Y	DNA	Low
Usall et al. 2016 Huerta-Ramos et al. 2020	Augmentation (FGA or SGA, fixed doses)	Y	Y	Y	Y	N	Y	Y	4.3 % 14.7 %	Y	DNA	Moderate
Weiser et al. 2017	Augmentation (FGA or SGA, flexible doses unspecified)	Y	Y	Y	Y	Y	Y	Y	14.5%	Y	DNA	Low
Vahdani et al. 2020	Augmentation (FGA or SGA, fixed doses)	Y	Y	Y	Y	Y	Y	Y	9.1 %	U	DNA	Low
Kianimehr et al. 2014	Coinitiation (Risperidone 6 mg/day, fixed dose)	Y	Y	U	Y	Y	Y	Y	U	U	N	Moderate
Khodaie- Ardakani et al. 2015	Coinitiation (Risperidone 6 mg/day, fixed dose)	Y	Y	Y	Y	Y	Y	Y	8.7 %	Y	DNA	Low
Aspirin												
Laan et al. 2010	Coinitiation (FGA+SGA, fixed dose)	Y	Y	Y	Y	N	Y	Y	17.1 %	Y	Y	Moderate
Weiser et al. 2021	Augmentation (FGA + SGA for at least 2 weeks, flexible dose)	Y	Y	Y	Y	N	Y	Y	10.5%	Y	DNA	Moderate
Weiser et al. 2021	Augmentation (FGA + SGA for at least 2 weeks, flexible dose)	Y	Y	Y	Y	Ν	Y	Y	20.6%	Y	DNA	Moderate

Attari et al. 2017	Coinitiation (FGA + SGA, fixed dose)	Y	Y	Y	Y	Y	U	Y	0 %	Y	DNA	High
Celecoxib												
Rapaport et al. (2005)	Augmentation (Olanzapine or risperidone, fixed dose unspecified)	Y	Y	Y	Y	N	Y	Y	8.0 %	N	DNA	Moderate
Müller et al. (2010)	Coinitiation (Amisulpride, flexible dose)	Y	Y	Y	Y	N	Y	Y	26.0 %	Y	DNA	Moderate
Müller et al. (2002)	Coinitiation (Risperidone, flexible dose)	Y	Y	Y	Y	U	Y	Y	14 %	Y	DNA	Moderate
Rappard and Müller (2004)	Coinitiation (Risperidone, flexible dose)	Y	Y	U	Y	U	Y	Y	U	U	DNA	High
Akhondzadeh et al. (2007)	Coinitiation (Risperidone, fixed dose 6mg/j)	Y	Y	Y	Y	Y	Y	Y	8.3 %	Y	DNA	Low

Y: Yes N:No U: Unclear (can't say) DNA does not apply. NA not available. Ns non-significant (p≥0.05). FGA first generation antipsychotics. SGA second-generation antipsychotics. PANSS Positive and Negative Syndrome Scale for Schizophrenia. RCT randomized controlled trials.

Supplementary material 7. Results supporting the recommendations: from Level of Evidence to WFSBP-grade recommendations.

Level of evidence (LoE)	WFSBP-grade
"A": attributed in case of at least two RCTs with low risk of bias showing	• WFSBP-grade 1 strong provisional recommendation in favor of treatment ('A' Lo
effectiveness AND absence of RCT with low risk of bias reporting non-significant	and GOOD acceptability),
effects. In case of conflicting results, the choice between A and B was guided by the	• WFSBP-grade 2 limited provisional recommendation in favor of treatment ('A' Lo
presence of meta-analyses with low risk of bias concluding to effectiveness (A) or	and MODERATE acceptability OR 'B' LoE and GOOD acceptability),
non-significant results (B). We have opted to use the term "provisional strong"	• WFSBP-grade 3 weak provisional recommendation ('A' LoE and POOR acceptabilit
instead of "strong" to qualify our recommendations, considering the limited	OR 'B' LoE and MODERATE/POOR acceptability OR 'C' LoE an
number of studies available, in particular with low risk of bias. This choice	GOOD/MODERATE/POOR acceptability).
acknowledges the possibility of future changes to these recommendations based	• WFSBP-grade -1/-2/-3 strong/limited/weak provisional recommendations against
on additional randomized controlled trials (RCTs).	treatment.
B ("limited"): attributed in case of downgrading of LoE A or if at least one RCT with	
moderate risk of bias reported effectiveness, with absence of RCT with moderate	
risk of bias reporting non-significant results.	
C ("weak"): attributed in case of at least one RCT with high risk of bias reporting	
effectiveness and absence of RCT with high risk of bias reporting non-significant	
results.	

quality methodological reports evolved with time. Similarly, if the RCT was published as a brief report/short communication, this was taken into account if some information was missing and the general quality of the trial was evaluated as recommended in the SIGN methodology[8]. We also took into consideration the potential conflicts of interest reported by the authors to modulate the final risk of bias. The risk of bias was downgraded if the majority of studies concluding to effectiveness also reported potential conflicts of interest.

The separation of levels of evidence and grades of recommendation is needed to allow to define first, second, third, etc. lines of treatment based on the quality of the source data, risk-benefit evaluation and other criteria for grading recommendations[9].

Summary of the evidence	Dose and duration / Study population	WFSBP-grade recommendations
N-acetylcysteine		
Eight meta-analyses published between 2012 and 2020	The NAC dose ranged from 600 to 3,600mg/day	Due to its good acceptability and most of the evidence ranging
explored the effectiveness of adjunctive NAC in	for 8 to 52 weeks. Four RCTs tested adjunctive	between A and B levels of evidence (LoE), adjunctive NAC at 1,200 to
schizophrenia [11–18]. Four were rated as high quality	NAC at 600 to 2000mg vs. placebo during 8 to	3,600mg/day for at least more than 12 weeks is provisionally
[12-14,16], including up to seven RCTs [13,16]. No	12 weeks [22,23,25,26]. Three further RCTs	recommended to improve negative symptoms and general
additional RCT was retrieved from the databases	tested adjunctive NAC at 1200 to 3600mg vs.	psychopathology in schizophrenia (WFSBP-grade 1), with currently
searches. The present recommendations are therefore	placebo during 24 to 52 weeks [19–21,24].	better evidence for chronic schizophrenia. Additionally, NAC
based on seven RCTs published in eight papers [19–26].	Three RCTs explored the effectiveness of NAC	augmentation may also improve positive symptoms and cognition in
Sample sizes ranged from 17 to 139 patients. These last	augmentation in patients with chronic	chronic schizophrenia with limited evidence (WFSBP-grade 2).
four meta-analyses concluded NAC was effective in	schizophrenia [19,23–25], three in patients	
improving negative symptoms.	with early-phase psychosis [20,21,26] and one	
	in a mixed population of early-phase and	
	chronic patients with psychotic disorder [22].	
	Two RCTs explored the effectiveness of NAC co-	

	initiation in addition to risperidone in the acute	
	phase first-episode schizophrenia[26] and one	
	in patients with acute phase chronic	
	schizophrenia [23].	
Sarcosine		
Five meta-analyses [27–31] (including three to six	The sarcosine dose of 2g/day was used in all	Sarcosine is an amino-acid with excellent acceptability. 2g/day
RCTs) explored the effectiveness of adjunctive	RCTs, for six to 24 weeks.	sarcosine augmentation for at least 12-24 weeks may improve
sarcosine in schizophrenia. All were considered of	All RCTs were carried out in chronic	negative symptoms (WFSBP-grade 2) in non-resistant schizophrenia
moderate quality, and all suggested the effectiveness	schizophrenia and two of them in patients with	but not positive symptoms, general psychopathology or cognition
of sarcosine on negative symptoms in non-resistant	predominant negative symptoms[5] or with	(WFSBP-grade -3).
schizophrenia (i.e. added to non-clozapine	primary deficit syndrome[33]. Four RCTs	Sarcosine 2g/day co-initiation with antipsychotics in the acute phase
antipsychotics), but not in resistant schizophrenia (i.e.	included inpatients[32–35], one outpatients[5]	of chronic schizophrenia may improve negative symptoms and
added to clozapine). The literature search retrieved no	and one a mix of in and outpatients[36].	general psychopathology (WFSBP-grade 2).
additional RCT, and six RCTs with moderate or high risk		Sarcosine may not be effective in treatment-resistant schizophrenia
of bias were included in the present recommendations		(WFSBP-grade -2).
[5,32–36]. The sample sizes ranged from 20 to 50		
participants. The risk of bias due to potential conflicts		
of interest was considered as high, as all but one RCTs		

were carried out by the same team reporting potential		
conflicts of interest.		
Minocycline		
Nine meta-analyses including up to 13 RCTs were	Minocycline doses ranged from 50 to	Among the two RCTs with low risk of bias exploring the effectiveness
identified [13–15,17,37–41], of which four were	300mg/day (mostly 100-200mg/day) for 8 to	of minocycline 200mg/day augmentation for at least 12-16 weeks,
considered of high quality[13,14,38,39]. All high-	52 weeks.	one found effectiveness for negative symptoms and general
quality meta-analyses found significant improvement	Four RCTs explored the effectiveness of	psychopathology and one found non significant results (positive
of negative symptoms with minocycline but non-	minocycline augmentation in chronic	symptoms: WFSBP-grade -1, negative symptoms and general
significant results for positive symptoms. Conflicting	schizophrenia[4,42–44], and four in early-	psychopathology : WFSBP-grade 2). One RCT with low risk of bias
results were obtained regarding general	phase schizophrenia[45–48].	found non significant results for all symptoms dimensions for
psychopathology. Of these 13 RCTs, only eight were	Three RCTs explored the effectiveness of	resistant schizophrenia (patients treated with clozapine) (WFSBP-
included in the present recommendations, because the	minocycline co-initiation in the acute phase of	Grade -2). The only RCT with low risk of bias exploring cognition
others were not available. Sample sizes ranged from 33	schizophrenia (one in early-phase	found non-significant results (WFSBP-grade -2).
to 200 participants.	schizophrenia) [47], and two in chronic	Minocycline 200 mg/day co-initiation with antipsychotics may be
	schizophrenia [4,44]).	effective for improving negative symptoms (WFSBP-grade 2).
		For minocycline, the largest trial in early-phase schizophrenia was
		negative, and future trials should focus on enriched populations with
		chances of responding to a medication based on the medication
		mechanism of action.
PUFA		

Eight meta-analyses published between 2006 and 2021	Eight RCTs explored the effectiveness of 1,000-	PUFAs augmentation in chronic schizophrenia has no significant
explored the effects of PUFAs on schizophrenia[13-	3,000 mg/day EPA alone [55,57,61-64,66,67]	effect on positive and negative symptoms (WFSBP-grade -1) and
15,38,49–52]. Five had a low risk of	and the rest tested a combination of EPA (396-	cognition (WFSBP-grade -2). However, PUFAs can improve general
bias[13,14,38,50,52]. The meta-analysis with the	1,080mg/day) with DHA (264-880 mg/day).	psychopathology (WFSBP-grade 1), which may correspond to
highest number of included RCTs (N=14) [13] found a	Only one RCT has tested delivery of DHA	symptoms of anxiety and/or depression associated with
small but significant improvement in positive	alone[62]. The trial durations ranged from 6 to	schizophrenia - but specific RCTs are needed to confirm this.
symptoms and general psychopathology and non-	26 weeks.	In the acute phase of chronic schizophrenia, PUFAs co-initiation with
significant results for negative symptoms in the groups	All RCTs were carried out in patients with	antipsychotics has a non-significant effects on positive symptoms
receiving adjunctive PUFAs compared to those	chronic schizophrenia except two that were	(WFSBP-grade -2) but may be effective when prescribed for at least
receiving placebo. Adjunctive PUFA use was also	carried out in acute phase first-episode [60,67]	16 weeks in patients with low PUFA blood levels (with at least
associated with a significant improvement in	and one in early-phase schizophrenia [58,59].	2,000mg/day EPA) (WFSBP-grade 2).
triglyceride blood levels but not body mass index,		In first-episode schizophrenia, PUFAs co-initiation with
fasting glucose, total cholesterol, low-density		antipsychotics may be effective for general psychopathology
lipoprotein cholesterol, or C-reactive protein. These		(WFSBP-grade 2) but not for positive and negative symptoms
results were maintained after removing high-risk of		(WFSBP-grade -2). In early-phase schizophrenia, PUFAs co-initiation
bias studies and those with small sample sizes. Meta-		with antipsychotics for at least 16 weeks (with at least 740mg/day
regression analyses revealed no effect of age, illness		EPA and 400 mg/day DHA) may be effective for depression, anxiety,
duration, dosage of PUFAs, eicosapentaenoic acid		and cognition in patients with schizophrenia (WFSBP-grade 2).
(EPA) / docosahexaenoic (DHA) ratio and triglyceride		
levels on these outcomes. No additional RCT was		
retrieved from our searches, and the 14 RCTs were		

included in the present recommendations [53-67].		
Sample sizes ranged from 20 to 85 participants.		
Aspirin		
Seven meta-analyses[12–15,68–70] including two to	The aspirin doses ranged from 325 to 1,000	Aspirin augmentation is not recommended for schizophrenia,
four RCTs explored the effectiveness of adjunctive	mg/day for 6 to 16 weeks, combined with	neither for the psychotic symptomatology nor for cognition (WFSBP-
aspirin in schizophrenia. All but one [15] had a low risk	omeprazole or pantoprazole to prevent gastro-	grade -2).
of bias. The latest meta-analysis [70] was the only one	intestinal side-effects.	However, there is weak evidence for the efficacy of 325 to 500
to include four RCTs and concluded there was no	All studies included in and outpatients. The	mg/day aspirin on positive and negative symptoms, and on general
significant effect of adjunctive aspirin on any symptom	results of two RCTs were published in the same	psychopathology in co-initiation with antipsychotics (combined with
dimension, with low heterogeneity. Four RCTs were	article[70], and one RCT had three arms,	omeprazole) and for six weeks (WFSBP-grade 3).
included in the recommendations[70-72]. There was	comparing 325 mg/day and 500 mg/day aspirin	
no risk of bias due to a conflict of interest. The sample	to placebo[72]. In addition, one RCT included	
size ranged from 40 to 200 patients.	patients with an illness duration<10 years [72],	
	one patient in the acute phase with at least two	
	years of illness duration [72], and two included	
	patients with at least two psychotic	
	episodes[70]. Notably, one RCT included	
	patients with low-grade peripheral	
	inflammation defined by a CRP blood	
	level≥1mg/L[70].	

Celecoxib		
Seven meta-analyses [12–15,38,68,73], including three	The celecoxib dose was 400mg/day in all trials	400mg/day celecoxib may improve positive symptoms and general
to eight RCTs explored the effect of celecoxib in	in addition to antipsychotics. The observation	psychopathology in co-initiation with risperidone in the acute phase
schizophrenia. Five had a low risk of bias [12-	period lasted from five to 11 weeks.	of chronic schizophrenia (WFSBP-grade 2) but not negative
14,38,68]. Five RCTs were included in our review [74–	One study included only first-episode patients	symptoms (WFSBP-grade -2). Celecoxib augmentation in stabilized
78]. One meta-analysis [73] included two studies	[75], three studies only chronic schizophrenia	outpatients is also not recommended (WFSBP-grade -2). No data
written in Chinese [79,80] and one study report results	patients [74,77,78], and one study with both	were available about celecoxib's effectiveness on cognition.
based on similar data [75] that were not included. A	first-episode and chronic schizophrenia	
potential risk of bias due to conflict of interest was	patients [76].	
identified in three RCTs [75,76,78]. Sample sizes		
ranged from 35 to 270. All meta-analyses highlighted		
substantial-to-high heterogeneity between studies and		
failed to show a significant improvement in patients		
treated with celecoxib compared to placebo.		
Estrogens		
Three meta-analyses specifically explored the	Authors used either transdermal estradiol 0.05	Eight-week estrogen supplementation has a good acceptability and
effectiveness of estrogens in schizophrenia (without	g/day to 0.2 g/day[82,83,86], conjugated oral	no RCT reported serious adverse events or increased rate of dropout
pooling estrogens with Selective Estrogen Receptor	estrogens 0.625 mg/day[84,88,89], ethynyl	in the groups with active treatments compared to placebo. All RCTs
Modulators (SERM's)) [15,38,81], including up to seven	estradiol 0.05 mg/day[90] or estradiol valerate	that included females included premenopausal/childbearing aged
RCTs[15,38] with one RCT having three treatment arms	2g/day [87] vs. placebo. The trials duration	women to prevent the risk of increased thromboembolism and
(two doses) [82]. Two were rated as having a low risk	ranged from two to eight weeks.	cancer with estrogen substitution in post-menopausal women.

of bias [38,81], and all suggested the effectiveness of	All RCTs included patients with chronic	Eight-week transdermal estradiol augmentation appears effective in
adjunctive estrogens in positive and negative	schizophrenia except one with a small	improving positive symptoms and general psychopathology in
symptoms in women with schizophrenia. Therefore,	proportion of first-episode patients [87]. In	childbearing-aged women with chronic schizophrenia with
two additional RCTs (one with low risk of bias[83] and	addition, all RCTs were carried out in women of	provisional evidence of effectiveness but uncertain evidence of
one with moderate risk of bias [84]) were added to the	childbearing-age, except for one conducted in	safety (WFSBP-grade 2) and with only limited evidence for negative
present recommendations for a total of nine RCTs (one	men [87].	symptoms (WFSBP-grade 2). Estrogen supplementation may be
with three arms).		more effective in women aged ≥38 years. The optimal recommended
Five RCTs were carried out by the same Australian		form and dose for effectiveness appears to be transdermal estradiol
team [82,85–87]. Two studies compared three arms,		0.2 mg/day. Altogether, data are lacking for longer treatment
i.e., with two doses of estrogens (co-initiation of 0.05		durations in terms of effectiveness and safety, especially given that
mg/day and 0.1 mg/day transdermal estradiol vs.		the most worrisome adverse events like cancer may take many years
placebo in acute phase schizophrenia [85] and		to manifest. We therefore took the decision not to recommend them
augmentation by transdermal estradiol 0.1 mg/day		at the highest level.
and 0.2 mg/day)[82]. The sample sizes ranged from 24		Eight weeks oral 0.05 mg/day ethynyl estradiol co-initiation with
to 200. Of note, the last RCT with a low risk of bias and		antipsychotics may improve all symptom dimensions of chronic
high sample size reported that the effectiveness was		schizophrenia in childbearing aged women inpatients (WFSBP-grade
almost entirely due to the sample of women aged ≥38		2).
years[83].		Adjunctive oral estradiol valerate 2 mg/day may be effective for
		general psychopathology in men with limited evidence (WFSBP-
		grade 2), but this treatment has been tested for only two weeks in

		one RCT, and additional trials with longer duration are needed to
		determine the effectiveness and safety of estradiol valerate.
Selective Estrogen Receptor Modulators (SERMs)		
Six meta-analyses have explored the effectiveness of	Doses of raloxifene ranged from 60 to	60-120 mg/day raloxifene augmentation cannot be currently
adjunctive raloxifene in schizophrenia [13-15,38,91-	120mg/day for six 6 to 24 weeks.	recommended in peri or post-menopausal women with
93]. Three meta-analyses were of high quality	All RCTs were carried out in patients with	schizophrenia, especially for positive and negative symptoms and for
[13,14,91] and included five to eight RCTs [94–101].	chronic schizophrenia. All but two RCTs [94,95]	cognitive functioning in chronic schizophrenia (WFSBP-grade -2).
The results of two RCTs were published in the same	were carried out in clinically stabilized patients.	Indeed, despite a relatively good acceptability of SERM, among the
article [97]. Three studies that assessed cognitive	All but three RCTs included peri- or post-	five RCTs with a low risk of bias, one with the largest sample size
outcomes were published since the publication of the	menopausal women only (one included men	(larger than the remaining four RCTs) reported a worsening of all
last meta-analysis and were included in the present	only in the acute phase schizophrenia [94] and	symptom dimensions.
recommendations. Two studies were related to the	two both sexes [100,104]). All RCTs included in-	120 mg/day raloxifene co-initiation with antipsychotics may improve
same RCT, so the recommendations were based on 10	and outpatients, except for one RCT that	negative symptoms and general psychopathology in men with acute-
RCTs [94–104]. Sample sizes ranged between 35 and	included only inpatients [95]; two did not	phase schizophrenia (WFSBP-grade 2).
200 participants. The overall risk of bias regarding	report hospitalization status [97,104].	
conflict of interest was low. The only meta-analysis		
with a low risk of bias and analyzing raloxifene alone		
concluded that raloxifene was effective in improving		
positive and negative symptoms and general		
psychopathology [91].		

Supplementary material 8. Context/rationale for the efficacy of each
 molecule, RCTs' global conclusions and risk of bias and subgroup

- analyses
- 4

5 N-acetyl-cysteine (NAC)

- 6 NAC is a neuroprotective agent with antioxidative, anti-inflammatory and glutamatergic
- 7 properties [105].
- 8 RCTs' global conclusions and risk of bias
- 9 Regarding NAC augmentation for negative symptoms and general psychopathology, one RCT with
- 10 low risk of bias found significant improvement after 12 weeks of 1,200mg/day administration
- 11 [25], vs. one with low risk of bias finding non-significant results after 26 weeks of 2,700 mg/day
- 12 administration [21]. Three meta-analyses (one with low and two with moderate risk of bias) found
- 13 significant results vs. one meta-analysis (with moderate risk of bias) finding non-significant result.
- 14 (LoE A: "provisional")
- 15 Regarding NAC augmentation for positive symptoms, one RCT with low risk of bias [25]) found
- 16 significant improvement vs. one with low risk of bias h finding non-significant results. One meta-
- 17 analysis (with low risk of bias) showed significant improvement in positive symptoms. (LoE B:
- 18 "limited")
- 19 Regarding cognition, two RCTs with low risk of bias [21,25] found some significant improvement
- 20 vs. no RCT with low risk of bias finding non-significant results. Two meta-analyses concluded to
- 21 significant improvement of working memory but results were not convergent for all cognitive
- 22 tests. (LoE B: "limited")
- 23 Regarding NAC coinitiation for negative symptoms one RCT with low risk of bias [23] found a
- 24 significant improvement vs. no RCT reported non-significant results (LoE B: "limited"). The same
- 25 RCT found non-significant results for general psychopathology (LoE -B: "limited").
- 26 Subgroup analyses
- 27 NAC in early psychosis
- 28 No RCT with low risk of bias found significant improvement of any symptom dimension in early
- 29 psychosis vs. one with low risk of bias finding non-significant results (26 weeks, 2,700 mg/day)
- 30 [21]. (LOE -B: "limited")
- 31

32 Sarcosine

- 33 Sarcosine, also known as *N*-methylglycine, is an intermediate and byproduct in glycine synthesis
- 34 and degradation and a non-selective glycine-reuptake inhibitor mediated by GlyT1. Sarcosine is
- 35 rapidly degraded to glycine, which, in addition to its importance as a constituent of proteins, plays

36 a significant role in various physiological processes as a prime metabolic source of components

- of living cells such as glutathione, creatine, purines and serine [106].
- 38 RCTs' global conclusions and risk of bias

In patients with non-resistant schizophrenia, sarcosine 2g/day augmentation was associated with a significant improvement of positive, negative symptoms, general psychopathology and cognition in respectively zero, two, zero and one RCTs with moderate risk of bias. vs. respectively one, one, one and zero RCT finding non-significant results (positive symptoms: LoE -C: "weak", negative symptoms: LoE C: "weak", general psychopathology: LoE -C: "weak", cognition: LoE B: "limited").

45 Regarding cognition, one RCT with moderate risk of bias [35] found mixed results and one with46 high risk of bias [33] non-significant results.

In patients with treatment-resistant schizophrenia, sarcosine 2g/day augmentation was
associated with non-significant results in all symptoms' dimensions in one RCT [36] with high risk
of bias. No RCT reported significant improvement (LoE -C: "weak").

50 Sarcosine 2g/day coinitiation with antipsychotics in acute phase chronic schizophrenia was 51 associated with significant improvement in negative symptoms and general psychopathology in

- 52 one RCT [34] with moderate risk of bias. No RCT reported non-significant results (LoE B "limited").
- 53 Subgroup analyses

54 One 24-week long RCT with moderate risk of bias [5] reported significant improvement of 55 negative symptoms in the group treated with sarcosine 2g/day. One 12-week long RCT [35] with 56 moderate risk of bias reported non-significant results. (LoE B: "limited")

57

58 Minocycline

59 Minocycline is a second-generation tetracycline antibiotic with a good penetration into the brain

and with anti-inflammatory anti-apoptotic and anti-oxidant actions, modulating glutamate and

61 monoamine neurotransmission and also, possibly, modulating microbiota composition [107].

62 RCTs' global conclusions and risk of bias

63 Regarding minocycline augmentation, one RCT with low risk of bias found a significant 64 improvement of negative symptoms (but not positive symptoms, general psychopathology and

cognition) in chronic schizophrenia [42], vs. one RCT with low risk of bias finding non-significantresults[48].

- 67 One RCT with low risk of bias found non-significant results for all symptoms' dimensions in 68 patients with resistant schizophrenia treated with clozapine [43] (LoE -B: "limited").
- 69 Regarding cognition, one RCTs with low risk of bias [43] found non-significant results with
- 70 minocycline 200 mg/day for 10 to 16 weeks (LoE -A: " provisional").

Regarding minocycline co-initiation in patients with acute phase chronic schizophrenia, one RCT with low risk of bias [4] with three arms (minocycline 100mg/day, 200 mg/day and placebo) found a significant improvement of negative symptoms in the minocycline 200mg/day arm but nonsignificant results in the other arms (minocycline 200mg/day: LoE B: "limited", minocycline 100mg/day: LoE -B: "limited") and non-significant results in all arms for positive symptoms and general psychopathology (LoE -B: "limited"). For cognition, one RCT with moderate risk of bias [44] found non-significant results (LoE -B: "limited").

78 Subgroup analyses

- 79 Regarding minocycline long-term augmentation (≥12 weeks) in early schizophrenia, one RCT with
- low risk of bias found non-significant results for all symptoms dimensions for minocycline 300
 mg/day for 52 weeks [48] (LoE -B: "limited"). Regarding cognition, one RCT with moderate risk of
- 82 bias [46] found non-significant results (LoE -B: "limited").
- 83

84 PUFAs

- Lower levels of PUFAs have been reported in the blood of people with schizophrenia compared
- to healthy volunteers [108]. PUFAs have anti-inflammatory properties and may be associated with
- 87 cognitive impairment [109].
- 88 RCTs' global conclusions and risk of bias
- Six RCTs[61–66] explored the effectiveness of adjunctive PUFA augmentation in chronic patients with schizophrenia. One RCT with low risk of bias[64] reported a significant improvement of general psychopathology, while one other with low risk of bias found non-significant results [66] (LoE B: "limited"). Regarding positive and negative symptoms, the two RCTs with low risk of bias [64,66] found non-significant results (LoE -A: "provisional"). Regarding cognition, one RCT[63] with moderate risk of bias found non-significant results (LoE B: "limited").
- 95 Seven RCTs explored the effectiveness of adjunctive PUFA coinitiation with antipsychotic96 treatments in acute phase of schizophrenia[54–60,67].
- 97 Regarding positive symptoms, one RCT with low risk of bias[57] showed significant improvement 98 of positive symptoms on patients with low blood level of PUFA, while one RCT with low risk of 99 bias [60] found non-significant results (but without measuring PUFA blood levels). One meta-100 analysis[13] with low risk of bias including the highest number of studies found a small but 101 significant improvement of positive symptoms (patients with low PUFA blood level: LoE B 102 "limited").
- 103 Regarding negative symptoms, two RCTs with low risk of bias[57,60] found non-significant results.
 104 (LoE -A: "provisional")
- 105 Regarding general psychopathology, one RCT[60] with low risk of bias found significant 106 improvement vs. one with low risk of bias finding non-significant results[57]. One meta-107 analysis[13] with low risk of bias including the highest number of studies found a small but

significant improvement of general psychopathology (LoE B: "limited"). Regarding cognition, only
 one RCT with moderate risk of bias [59] found improvement in some tests but not in others (LoE

110 B: "limited").

111 Subgroup analysis

112 Regarding illness course of schizophrenia, one RCT with low risk of bias [60] found a significant 113 improvement of general psychopathology in first episode schizophrenia after 26 weeks of PUFA 114 administration(LoE B: "limited"). No significant improvement was observed for positive and 115 negative symptoms (LoE -B: "limited").

116 Regarding PUFAs and doses in RCT with low risk of bias and significant results, one RCT[60] found 117 that patients treated with adjunctive EPA 1320 DHA 880 mg/day fish oil co-initiation for 26 weeks 118 had a significant improvement on general psychopathology compared to those treated with 119 placebo. In the second RCT[57], adjunctive EPA 2,000mg/day co-initiation was effective in 120 improving positive symptoms of chronic schizophrenia only in patients with low PUFA level.

121

122 COX inhibitors (Aspirin, Celecoxib)

The inflammatory hypothesis for schizophrenia has been supported by evidence from basic 123 124 science, epidemiological associations and biomarkers studies [110,111]. Cyclooxygenase (COX) 125 inhibitors (including anti-COX-1 low-dose aspirin, anti-COX-2 celecoxib and anti-COX1/anti-COX2 126 high-dose aspirin) suppress the production of prostaglandins and thromboxanes involved in the 127 inflammatory processes [112]. Aspirin also reduces the hypothalamic-pituitary-adrenal axis 128 response [113]. In contrast to celecoxib which can easily cross the blood-brain barrier, aspirin 129 levels in the central nervous system are lower than in peripheral blood [114]. They have been the most studied COX inhibitors in schizophrenia thus far. 130

131

132 Aspirin

133 RCTs' global conclusions and risk of bias

134 Three RCTs were classified with moderate risk of bias[70,71] and one with high risk of bias[72].

135 Two RCTs with moderate risk of bias reported no significant effect of aspirin augmentation in

- 136 chronic schizophrenia[70] vs. one RCT with moderate risk of bias finding significant improvement
- 137 of positive symptoms in the group treated with 1,000mg/day aspirin+pantoprazole and non-
- significant results for negative symptoms and general psychopathology)[71] (all symptomsdimensions LoE -B "limited").
- 140 One RCT with high risk of bias reported significant improvement of all symptoms dimensions in
- 141 the two arms receiving aspirin 325mg/day and 500 mg/day combined with omeprazole [72] (LoE
- 142 C "weak").

143 On the three studies exploring cognition, all reported non-significant effects of aspirin144 augmentation[70] or co-initiation[71].

145

146 Celecoxib

147 RCTs' global conclusions and risk of bias

148 One RCT with moderate risk of bias found non-significant results for celecoxib augmentation in 149 chronic schizophrenia[77] (LoE -B "limited").

150 One RCT with low risk of bias found significant improvement of positive symptoms and general

151 psychopathology in acute phase of chronic schizophrenia inpatients treated with a combination

152 of risperidone 6mg/day + celecoxib compared to risperidone 6 mg/day + placebo, and non-

significant results for negative symptoms [74] (positive symptoms and general psychopathology

LoE B "limited", negative symptoms LoE -B "limited").

155 Subgroup analyses

One meta-analysis suggested that celecoxib might exhibit better results in patients with first episode schizophrenia [73] but the two related studies[75,76] had a moderate risk of bias and obtained contradictory results: improvement of negative symptoms in only one RCT [75], or of general psychopathology in the other RCT [76] (negative symptoms and general psychopathology LoE B "limited", positive symptoms LoE -B "limited").

161

162 Estrogens and Selective Estrogen Receptor Modulators (SERM)

Steroid hormones modulate neurotransmitter system, neuroplasticity, memory and learning,innate immune signaling pathways and inflammatory mediators with sex differences.

165

166 Estrogens

167 RCTs' global conclusions and risk of bias

168 Transdermal estradiol 0.1 to 0.2mg/day augmentation was associated with significant 169 improvement of positive symptoms and general psychopathology of chronic stabilized 170 schizophrenia in women of child-bearing age in three RCTs with low risk of bias (one with three 171 arms reporting similar effects in the two active arms)[82,83,86], with no RCT with low risk of bias 172 finding non-significant results. (LoE A: "provisional")

173 Transdermal estradiol 0.2mg/day augmentation was associated with significant improvement of

174 negative symptoms of chronic stabilized schizophrenia in women in one RCT with low risk of bias

175 [83] vs. non-significant results in two RCTs with low risk of bias carried out by the same team (two

176 with 0.1mg/day and one arm with 0.2mg/day)[82,86]. The meta-analyses reported significant

177 improvement of negative symptoms (LoE B: "limited")

Oral 0.625 mg conjugated estrogen with 2.5 mg of medroxyprogesterone acetate was associated
with significant improvement of negative symptoms of chronic stabilized schizophrenia in women
of child-bearing age in one RCT with low risk of bias[88] with no RCT with low risk of bias reporting
non-significant results. (LoE B: "limited")

Oral 0.05 mg ethynyl estradiol co-initiation with antipsychotics has shown significant
improvement in all symptom dimensions of chronic schizophrenia in one RCT with low risk of bias
including childbearing aged female inpatients [90]. (LoE B: "limited")

- Oral 0.625 mg conjugated estrogen co-initiation with antipsychotics has shown non-significant results in all symptom dimensions of chronic schizophrenia in one RCT with moderate risk of bias including childbearing aged women [84]. (LOE -B: "limited")
- Adjunctive oral estradiol valerate 2mg/day for two weeks was associated with significant improvement of general psychopathology in men in one RCT with moderate risk of bias [87] (LoE B: "limited"). Of note, no feminization side effects were reported in this RCT probably due to the short duration of treatment.
- 192

193 **SERM**

194 RCTs' global conclusions and risk of bias

195 Raloxifene 60-120 mg/day augmentation was associated with contradictory results on symptoms196 of schizophrenia, in five RCTs with low risk of bias [96,98–101].

- 197 Regarding cognition, two RCTs with low risk of bias found a significant improvement in some tests 198 but not in others [100] [104]. Both RCTs included both men and women. Two other RCTs including 199 only peri- or post-menopausal women (and published in three papers) found non-significant 200 results [96,101,102] and one meta-analysis with low risk of bias [115]found non significant results 201 on cognition (LOE B "limited").
- In men, raloxifene 120 mg/day coinitiation with antipsychotics was associated with significant improvement in negative symptoms and general psychopathology (LoE B: "limited") (but not in positive symptoms) with acute phase schizophrenia in one RCT with low risk of bias [94].
- 205 In post-menopausal women, raloxifene 120 mg/day coinitiation with antipsychotics was 206 associated with significant improvement in positive symptoms in one RCT with moderate risk of 207 bias [95] (LoE B: "limited").

208 Subgroup analyses

209 Concerning long-term administration, in one RCT with moderate risk of bias lasting 24 weeks 210 [98,103], adjunctive 60 mg/day raloxifene was associated with significant improvement of 211 negative symptoms and general psychopathology (LoE B: "limited") but not positive symptoms 212 and cognition (LoE -B: "limited").

- Three RCTs with low risk of bias included only peri or post-menopausal women [96,99,101,102],
- 214 raloxifene 60-120mg/day augmentation was associated with contradictory results. Regarding
- 215 negative symptoms, one RCT (n=32) showed a significant improvement [99], one (n=69) showed

216	non-significant results [96], and one (n=174) showed significant worsening [101] (LoE -B:
217	"limited"). Regarding general psychopathology, two RCTs showed a significant improvement [99]
218	[96], and one (n=174) showed significant worsening [101] (LoE B: "limited").
219	No RCT included childbearing-age women (LoE 4 "lack of evidence").
220	

Supplementary material 9. Complementary analyses on sample size, riskof bias and country economic status

224

Previous meta-analyses (including respectively 56 and 70 RCTs) have reported that effect sizes 225 226 were inversely correlated with sample size [13,14]. This means that studies with a larger sample 227 size have a lower propensity to show significant improvements. Regarding our 63 RCTs, we 228 performed complementary analyses for each symptom dimension and cognition to estimate 229 whether or not the probability of observing a significant improvement was influenced by sample 230 size. Importantly, the analysis was not performed on standardized mean difference but on the 231 presence/absence of any significant effect as this was used to formulate our recommendations. 232 Similarly, we have checked a possible influence of the level of risk of bias.

233

To investigate the putative influence of sample size or risk of bias on our results, we performed a series of logistic regression analyses in which the presence(1)/absence(0) of a significant improvement of positive symptoms, negative symptoms, general psychopathology, cognition was entered as dependent variables. The total sample size and the risk of bias (low vs. medium vs. high) were entered successively as predictors.

- 239 (model 1) Improv(1/0) = cons + a x Samplesize
- 240 (model 2) Improv(1/0) = cons + b x Riskofbias
- 241 (model 3) Improv $(1/0) = cons + a \times Samplesize + b \times Riskofbias$
- All analyses were performed under a Bayesian framework. For each symptom dimensions, wecalculated:
- the mean (*M*) and credible interval (CI95%) of the coefficient *a* and the probability that *a*was greater than 0
- 246 2) the ORs and credible intervals (CI95%) of medium/low, high/medium, high/low and the
 247 probability that each OR was greater than 1.

Probabilities were regarded as meaningful if they were either lower than 2.5% or higher than
97.5% [keeping in mind for instance that *Pr*(low>high)=1-*Pr*(high-low)].

A burn-in of 5,000 iterations followed by 100,000 iterations was used for each of the three chains, yielding a final 300,000 iteration sample for retrieving the characteristics of the posterior distribution. Convergence of the Markov chain Monte Carlo (MCMC) sample chains was checked graphically and was observed in each case. All computations were performed in the R computing

environment with the required additional packages (in particular r2jags).

256 Results showed (see results in the table below):

257	-	no meaningful influence of sample size for all symptom dimensions, except for cognition
258		(in both models 1 and 3) in which larger sample sizes were associated with a lower
259		probability of significant cognitive improvement
260	-	a trend for a higher probability to find a significant improvement of positive symptoms
261		and of cognition in studies with low compared to moderate risk of bias
262	-	a higher probability to find a significant improvement of general symptomatology in
263		studies with low compared to moderate risk of bias (in both models 2 and 3)
264		

265

		Positive symptoms				Negative symptoms			
Model		<i>M</i> /OR	CLS	95%	Pr	<i>M</i> /OR	CI 95%		Pr
1	sample size	0.136	[-0.428	0.684]	0.692	-0.188	[-0.778	0.349]	0.256
2	medium vs. low	0.304	[0.075	1.115]	0.037	0.699	[0.216	2.252]	0.273
	high vs. low	1.060	[0.200	5.391]	0.528	0.950	[0.179	4.803]	0.475
	high vs. medium	3.498	[0.637	19.93]	0.926	1.360	[0.267	6.652]	0.648
3	sample size	0.081	[-0.518	0.668]	0.612	-0.221	[-0.829	0.331]	0.226
	medium vs. low	0.306	[0.074	1.138]	0.039	0.654	[0.197	2.134]	0.243
	high vs. low	1.069	[0.195	5.638]	0.532	0.910	[0.168	4.728]	0.455
	high vs. medium	3.515	[0.617	20.56]	0.922	1.391	[0.267	7.098]	0.656

266

		General symptomatology				Cognition			
Model		<i>M</i> /OR	CLS	95%	Pr	<i>M</i> /OR	CI 95%		Pr
1	sample size	-0.098	[-0.662	0.437]	0.366	-1.758	[-3.67	-0.408]	0.002
2	medium vs. low	0.211	[0.057	0.709]	0.006	0.373	[0.053	2.253]	0.141
	high vs. low	0.562	[0.100	3.122]	0.252	1.221	[0.029	50.90]	0.546
	high vs. medium	2.687	[0.481	15.32]	0.873	3.297	[0.075	150.8]	0.751
3	sample size	-0.199	[-0.818	0.379]	0.256	-2.882	[-6.10	-0.780]	<0.001
	medium vs. low	0.195	[0.050	0.677]	0.005	0.101	[0.005	1.087]	0.030
	high vs. low	0.521	[0.088	3.048]	0.231	0.071	[0.001	5.163]	0.107
	high vs. medium	2.683	[0.474	15.89]	0.868	0.731	[0.014	40.35]	0.433

267

268 Note: M=mean, OR=odds ratio, Cl95%=credible interval 95%, Pr=probability that *a* > 0 or OR > 1
269 accordingly

270 In conclusion, we found no significant association between sample size and the probability of

271 observing a significant improvement of positive symptoms, negative symptoms or general

symptomatology. However, a higher sample size was associated with a lower probability of observing significant cognitive improvement. Studies with a low risk of bias had a higher probability than studies with moderate risk of bias of showing a significant improvement in general symptomatology. A similar trend was observed for positive symptoms and cognition, but not for negative symptoms.

277

As some authors have suggested that results may vary between high and middle income countries[6], we conducted additional sensitivity analyses in which we examined whether the probability to find positive results was higher in upper middle vs. high income countries.

281 Upper middle income countries were: China, India, Iran, Romania/Moldavia, South Africa; high 282 income countries were: Australia, Norway, Poland, Spain, South Korea, Switzerland, UK, USA[7].

First of all, the proportion of low, moderate, and high risk of bias studies was similar between upper middle-income and high-income countries (Chi2 = 4.2, p = 0.121).

Second, the probability of finding a positive (significant) result was higher in upper middle-income studies compared to high-income studies for negative symptoms (Pr = 0.992), but not for positive symptoms (Pr = 0.878) and general symptomatology (Pr = 0.870), regardless of the risk of bias. Similar results were obtained when we restricted our analyses to low-risk-of-bias studies. The probability of finding a positive (significant) result was higher in upper middle-income countries compared to high-income countries for negative symptoms (Pr > 0.999), not for positive symptoms (Pr = 0.744), but showed a trend for general symptomatology (Pr = 0.965).

When considering only the studies related to NAC, estrogens, and PUFAs (the drugs that have shown the best level of evidence for efficacy), similar results were obtained. However, these results should be interpreted with caution as the number of studies considered here was quite low (between three and five).

296 These analyses thus provide some arguments to question a possible bias associated with the

297 country where the study was conducted.

_			Risk of bias		
Country	Number of studies	Low	Moderate	High	Total
High	Total	12 (36.4%)	21 (54.6%)	5 (9.1%)	38 (100%)
	With significant results				
	Pos (%)	4 (33.3%)	4 (22.2%)	1 (0%)	9 (24.2%)
	Neg (%)	1 (8.3%)	8 (33.3%)	1 (0%)	10 (21.2%)
	Gen (%)	5 (41.7%)	7 (0%)	1 (0%)	13 (15.2%)
Upper	Total	13 (41.9%)	8 (35.5%)	6 (22.6%)	27 (100%)
middle	With significant results				
	Pos (%)	6 (30.7%)	1 (9.1%)	3 (0%)	10 (16.1%)
	Neg (%)	10 (61.5%)	2 (36.4%)	3 (57.1%)	15 (51.6%)
	Gen (%)	10 (61.5%)	0 (9.1%)	3 (57.1%)	13 (41.9%)
Total	Total	25 (39.1%)	29 (45.3%)	11 (15.6%)	65 (100%)
	With significant results				
	Pos (%)	10 (32.0%)	5 (27.6%)	4 (0%)	13 (20.3%)
	Neg (%)	11 (36.0%)	10 (31.0%)	4 (40.0%)	23 (35.9%)
	Gen (%)	15 (52.0%)	7 (44.8%)	4 (40.0%)	18 (28.1%)

298

299 Significant results = positive significant results; % = proportion of studies with positive significant 300 results. The number of studies slightly differ from that reported in Table 1, as double arm studies 301 were rated twice in case of discrepant results between arms. Also, Peet et al. 2001 study[62] was 302 conducted both in UK and in India and was thus reported twice.

303

304 Details of the studies with low risk of bias

305

Agent	High income countries (k=12)	Upper middle income countries (k=12)
	Australia, Norway, Poland, South Korea,	Iran, Romania, South Africa, China
	Spain, Switzerland, UK, USA	
NAC	Augmentation	Augmentation
	Conus et al., 2018 (ns/ns/ns)	Sepehrmanesh et al., 2018 (+/+/+)
	early schizophrenia	chronic schizophrenia
		Co-initiation
		Farokhnia et al., 2013 (ns/+/ns)
		acute schizophrenia
PUFA	Augmentation	Augmentation
	Peet et al., 2002 (ns/ns/ns)	Emsley et al., 2002 (ns/ns/+)
	Pawelczyk et al., 2016 (ns/ns/+)	Emsley et al., 2006 (ns)
	Bentsen et al., 2013 (+/ns/ns)	
Estrogens	Augmentation	Augmentation
	Ko et al., 2006 (NA/+/+)	Weiser et al., 2019 (+/+/+)
	Kulkarni et al., 2008 (+/ns/+)	Co-initiation
	Kulkarni et al., 2014 (+/ns/+)	Akhondzadeh et al., 2003 (+/+/+)
Minocycline	Augmentation	Augmentation
	Deakin et al., 2018 (ns/ns/ns) Kelly et al., 2015 (ns/ns/ns)	Khodaie-Ardakani et al., 2014 (ns/+/+)
		Co-initiation
		Zhang et al. (2018)) (ns/+,ns/ns)
SERM	Augmentation	Augmentation
	Usall et al., 2011 (+/+/+)	Weiser et al., 2017 (-/-/-)
	Weickert et al, 2015 (ns/ns/ns)	Vahdani et al., 2020 (+,ns for cognition)
	Kulkarni et al. 2016 (ns/ns/+)	
		Co-initiation
		Khodaie-Ardakani et al., 2015 (ns/+/+)
Celecoxib		Akhondzadeh et al., 2007

306

307 Note: (positive/negative/general psychopathology). + = positive significant result; ns = non 308 significant result; - negative significant result.

309

310

Supplementary material 10. References for supplementary material 311 312 1

313

ClinicalTrials.gov. 2022.https://clinicaltrials.gov/ (accessed 4 Sep 2022). 2 EU Clinical Trials Register. 2022.https://www.clinicaltrialsregister.eu/ctr-search/search 314 315 (accessed 4 Sep 2022).

- 316 Hasan A, Bandelow B, Yatham LN, et al. WFSBP guidelines on how to grade treatment 3 evidence for clinical guideline development. The World Journal of Biological Psychiatry 317
- 318 2019;20:2-16. doi:10.1080/15622975.2018.1557346
- Zhang L, Zheng H, Wu R, et al. Minocycline adjunctive treatment to risperidone for 319 4 320 negative symptoms in schizophrenia: Association with pro-inflammatory cytokine levels. 321 Progress in Neuro-Psychopharmacology and Biological Psychiatry 2018;85:69–76.

322 doi:10.1016/j.pnpbp.2018.04.004

323 5 Strzelecki D, Podgórski M, Kałużyńska O, et al. Adding Sarcosine to Antipsychotic 324 Treatment in Patients with Stable Schizophrenia Changes the Concentrations of Neuronal and 325 Glial Metabolites in the Left Dorsolateral Prefrontal Cortex. Int J Mol Sci 2015;16:24475–89.

doi:10.3390/ijms161024475 326

Panagiotou OA, Contopoulos-Ioannidis DG, Ioannidis JPA. Comparative effect sizes in 327 6

328 randomised trials from less developed and more developed countries: meta-epidemiological 329 assessment. BMJ 2013;346:f707. doi:10.1136/bmj.f707 330 World Bank. World Economic Situation and Prospects. 2014.https://www.un.org/en/development/desa/policy/wesp/wesp_current/2014wesp_country_cla 331 332 ssification.pdf (accessed 1 Jul 2023). 333 SIGN. Checklists. SIGN. 2022.https://testing36.scot.nhs.uk (accessed 13 Aug 2022). 8 334 BMJ Best practice. What is GRADE? 335 2022.https://bestpractice.bmj.com/info/toolkit/learn-ebm/what-is-grade/ (accessed 29 Jul 2022). 336 10 Andrews JC, Schünemann HJ, Oxman AD, et al. GRADE guidelines: 15. Going from 337 evidence to recommendation-determinants of a recommendation's direction and strength. 338 Journal of Clinical Epidemiology 2013;66:726-35. doi:10.1016/j.jclinepi.2013.02.003 339 11 Zheng W, Zhang Q-E, Cai D-B, et al. N-acetylcysteine for major mental disorders: a 340 systematic review and meta-analysis of randomized controlled trials. Acta Psychiatr Scand 341 2018;137:391-400. doi:10.1111/acps.12862 342 Sommer IE, de Witte L, Begemann M, et al. Nonsteroidal anti-inflammatory drugs in 12 343 schizophrenia: ready for practice or a good start? A meta-analysis. J Clin Psychiatry 344 2012;73:414-9. doi:10.4088/JCP.10r06823 Jeppesen R, Christensen RHB, Pedersen EMJ, et al. Efficacy and safety of anti-345 13 346 inflammatory agents in treatment of psychotic disorders - A comprehensive systematic review 347 and meta-analysis. Brain Behav Immun 2020;90:364-80. doi:10.1016/j.bbi.2020.08.028 348 Çakici N, van Beveren NJM, Judge-Hundal G, et al. An update on the efficacy of anti-14 349 inflammatory agents for patients with schizophrenia: a meta-analysis. Psychol Med 350 2019;**49**:2307–19. doi:10.1017/S0033291719001995 Cho M, Lee TY, Kwak YB, et al. Adjunctive use of anti-inflammatory drugs for 351 15 schizophrenia: A meta-analytic investigation of randomized controlled trials. Aust NZJ 352 353 Psychiatry 2019;:4867419835028. doi:10.1177/0004867419835028 354 16 Yolland CO, Hanratty D, Neill E, et al. Meta-analysis of randomised controlled trials with 355 N-acetylcysteine in the treatment of schizophrenia. Aust N Z J Psychiatry 2020;54:453-66. doi:10.1177/0004867419893439 356 Chang C-H, Lane H-Y, Tseng P-T, et al. Effect of N-methyl-D-aspartate-receptor-357 17 358 enhancing agents on cognition in patients with schizophrenia: A systematic review and meta-359 analysis of double-blind randomised controlled trials. J Psychopharmacol 2019;33:436-48. 360 doi:10.1177/0269881118822157 361 18 Magalhães PVS, Dean O, Andreazza AC, et al. Antioxidant treatments for schizophrenia. Cochrane Database Syst Rev 2016;2:CD008919. doi:10.1002/14651858.CD008919.pub2 362 363 19 Berk M, Copolov D, Dean O, et al. N-acetyl cysteine as a glutathione precursor for 364 schizophrenia--a double-blind, randomized, placebo-controlled trial. Biol Psychiatry 365 2008;64:361-8. doi:10.1016/j.biopsych.2008.03.004 366 20 Breier A, Liffick E, Hummer TA, et al. Effects of 12-month, double-blind N-acetyl 367 cysteine on symptoms, cognition and brain morphology in early phase schizophrenia spectrum disorders. Schizophrenia Research 2018;199:395-402. doi:10.1016/j.schres.2018.03.012 368 369 Conus P, Seidman LJ, Fournier M, et al. N-acetylcysteine in a Double-Blind Randomized 21 370 Placebo-Controlled Trial: Toward Biomarker-Guided Treatment in Early Psychosis. Schizophr 371 Bull 2018;44:317-27. doi:10.1093/schbul/sbx093 372 22 Davis M, Wynn J, Weiner K, et al. Randomized controlled trial of N-acetylcysteine for 373 cognition and EEG correlates in schizophrenia. In: Neuropsychopharmacology. 2014. \$363-374 S363. 375 23 Farokhnia M, Azarkolah A, Adinehfar F, et al. N-Acetylcysteine as an Adjunct to 376 Risperidone for Treatment of Negative Symptoms in Patients With Chronic Schizophrenia: A 377 Randomized, Double-Blind, Placebo-Controlled Study. Clinical Neuropharmacology 378 2013;36:185-92. doi:10.1097/WNF.00000000000000001 379 24 Rapado-Castro M, Dodd S, Bush AI, et al. Cognitive effects of adjunctive N -acetyl 380 cysteine in psychosis. Psychol Med 2017;47:866-76. doi:10.1017/S0033291716002932 381 Sepehrmanesh Z, Heidary M, Akasheh N, et al. Therapeutic effect of adjunctive N-acetyl 25 382 cysteine (NAC) on symptoms of chronic schizophrenia: A double-blind, randomized clinical trial. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2018;82:289–96. 383 384 doi:10.1016/j.pnpbp.2017.11.001 Zhang J, Chen B, Lu J. Treatment effect of risperidone alone and combined with N-385 26 386 acetyl-cysteine for first-episode schizophrenic patients. J Clin Psychiatry 2015;1005:394-6. 387 Tsai GE, Lin P-Y. Strategies to enhance N-methyl-D-aspartate receptor-mediated 27

388 neurotransmission in schizophrenia, a critical review and meta-analysis. Curr Pharm Des 389 2010;16:522-37. doi:10.2174/138161210790361452 390 28 Singh SP, Singh V. Meta-analysis of the efficacy of adjunctive NMDA receptor modulators in chronic schizophrenia. CNS Drugs 2011;25:859-85. doi:10.2165/11586650-391 392 00000000-00000 393 29 Chang C-H, Lin C-H, Liu C-Y, et al. Efficacy and cognitive effect of sarcosine (N-394 methylglycine) in patients with schizophrenia: A systematic review and meta-analysis of double-395 blind randomised controlled trials. J Psychopharmacol 2020;34:495-505. 396 doi:10.1177/0269881120908016 397 Goh KK, Wu T-H, Chen C-H, et al. Efficacy of N-methyl-D-aspartate receptor modulator 30 398 augmentation in schizophrenia: A meta-analysis of randomised, placebo-controlled trials. J 399 Psychopharmacol 2021;35:236-52. doi:10.1177/0269881120965937 400 Marchi M, Galli G, Magarini FM, et al. Sarcosine as an add-on treatment to antipsychotic 31 401 medication for people with schizophrenia: a systematic review and meta-analysis of randomized 402 controlled trials. Expert Opin Drug Metab Toxicol 2021;17:483-93. 403 doi:10.1080/17425255.2021.1885648 404 32 Lane H-Y, Lin C-H, Huang Y-J, et al. A randomized, double-blind, placebo-controlled 405 comparison study of sarcosine (N-methylglycine) and D-serine add-on treatment for 406 schizophrenia. Int J Neuropsychopharmacol 2010;13:451-60. doi:10.1017/S1461145709990939 407 Lane H-Y, Huang C-L, Wu P-L, et al. Glycine transporter I inhibitor, N-methylglycine 33 408 (sarcosine), added to clozapine for the treatment of schizophrenia. Biol Psychiatry 2006;60:645-409 9. doi:10.1016/j.biopsych.2006.04.005 410 Lane H-Y, Chang Y-C, Liu Y-C, et al. Sarcosine or D-serine add-on treatment for acute 34 411 exacerbation of schizophrenia: a randomized, double-blind, placebo-controlled study. Arch Gen 412 Psychiatry 2005;62:1196-204. doi:10.1001/archpsyc.62.11.1196 413 Lin C-Y, Liang S-Y, Chang Y-C, et al. Adjunctive sarcosine plus benzoate improved 35 414 cognitive function in chronic schizophrenia patients with constant clinical symptoms: A 415 randomised, double-blind, placebo-controlled trial. World J Biol Psychiatry 2017;18:357-68. doi:10.3109/15622975.2015.1117654 416 417 Tsai G, Lane H-Y, Yang P, et al. Glycine transporter I inhibitor, N-methylglycine 36 418 (sarcosine), added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry 419 2004;55:452-6. doi:10.1016/j.biopsych.2003.09.012 420 37 Oya K, Kishi T, Iwata N. Efficacy and tolerability of minocycline augmentation therapy 421 in schizophrenia: a systematic review and meta-analysis of randomized controlled trials. Hum 422 Psychopharmacol 2014;29:483–91. doi:10.1002/hup.2426 423 Sommer IE, van Westrhenen R, Begemann MJH, et al. Efficacy of anti-inflammatory 38 424 agents to improve symptoms in patients with schizophrenia: an update. Schizophr Bull 425 2014;40:181-91. doi:10.1093/schbul/sbt139 426 39 Solmi M, Veronese N, Thapa N, et al. Systematic review and meta-analysis of the 427 efficacy and safety of minocycline in schizophrenia. CNS Spectr 2017;22:415–26. 428 doi:10.1017/S1092852916000638 429 Xiang Y-Q, Zheng W, Wang S-B, et al. Adjunctive minocycline for schizophrenia: A 40 430 meta-analysis of randomized controlled trials. Eur Neuropsychopharmacol 2017;27:8-18. 431 doi:10.1016/j.euroneuro.2016.11.012 432 Zheng W, Zhu X-M, Zhang Q-E, et al. Adjunctive minocycline for major mental 41 433 disorders: A systematic review. J Psychopharmacol 2019;33:1215–26. 434 doi:10.1177/0269881119858286 435 Khodaie-Ardakani M-R, Mirshafiee O, Farokhnia M, et al. Minocycline add-on to 42 436 risperidone for treatment of negative symptoms in patients with stable schizophrenia: 437 Randomized double-blind placebo-controlled study. Psychiatry Research 2014;215:540–6. 438 doi:10.1016/j.psychres.2013.12.051 439 Kelly DL, Sullivan KM, McEvoy JP, et al. Adjunctive Minocycline in Clozapine-Treated 43 440 Schizophrenia Patients With Persistent Symptoms. Journal of Clinical Psychopharmacology 441 2015;35:374-81. doi:10.1097/JCP.00000000000345 442 44 Weiser M, Levi L, Burshtein S, et al. The effect of minocycline on symptoms in 443 schizophrenia: Results from a randomized controlled trial. Schizophrenia Research 444 2019;206:325-32. doi:10.1016/j.schres.2018.10.023 445 45 Chaudhry IB, Hallak J, Husain N, et al. Minocycline benefits negative symptoms in early 446 schizophrenia: a randomised double-blind placebo-controlled clinical trial in patients on standard treatment. J Psychopharmacol 2012;26:1185-93. doi:10.1177/0269881112444941 447

448 46 Liu F, Guo X, Wu R, et al. Minocycline supplementation for treatment of negative 449 symptoms in early-phase schizophrenia: A double blind, randomized, controlled trial. 450 Schizophrenia Research 2014;153:169-76. doi:10.1016/j.schres.2014.01.011 451 47 Levkovitz Y, Mendlovich S, Riwkes S, et al. A Double-Blind, Randomized Study of 452 Minocycline for the Treatment of Negative and Cognitive Symptoms in Early-Phase 453 Schizophrenia. J Clin Psychiatry 2010;71:138-49. doi:10.4088/JCP.08m04666yel Deakin B, Suckling J, Barnes TRE, et al. The benefit of minocycline on negative 454 48 455 symptoms of schizophrenia in patients with recent-onset psychosis (BeneMin): a randomised, 456 double-blind, placebo-controlled trial. The Lancet Psychiatry 2018;5:885-94. 457 doi:10.1016/S2215-0366(18)30345-6 458 Goh KK, Chen CY-A, Chen C-H, et al. Effects of omega-3 polyunsaturated fatty acids 49 459 supplements on psychopathology and metabolic parameters in schizophrenia: A meta-analysis of 460 randomized controlled trials. J Psychopharmacol 2021;35:221-35. doi:10.1177/0269881120981392 461 462 Fusar-Poli P, Berger G. Eicosapentaenoic acid interventions in schizophrenia: meta-50 analysis of randomized, placebo-controlled studies. J Clin Psychopharmacol 2012;32:179-85. 463 464 doi:10.1097/JCP.0b013e318248b7bb 465 Chen AT, Chibnall JT, Nasrallah HA. A meta-analysis of placebo-controlled trials of 51 466 omega-3 fatty acid augmentation in schizophrenia: Possible stage-specific effects. Ann Clin 467 Psychiatry 2015;27:289-96. 468 52 Joy CB, Mumby-Croft R, Joy LA. Polyunsaturated fatty acid supplementation for 469 schizophrenia. Cochrane Database Syst Rev 2006;:CD001257. 470 doi:10.1002/14651858.CD001257.pub2 471 53 Emsley R, Chiliza B, Asmal L, et al. A randomized, controlled trial of omega-3 fatty 472 acids plus an antioxidant for relapse prevention after antipsychotic discontinuation in first-473 episode schizophrenia. Schizophrenia Research 2014;158:230-5. 474 doi:10.1016/j.schres.2014.06.004 475 Qiao Y, Mei Y, Han H, et al. Effects of Omega-3 in the treatment of violent schizophrenia 54 476 patients. Schizophrenia Research 2018;195:283-5. doi:10.1016/j.schres.2017.08.026 477 Jamilian H, Solhi H, Jamilian M. Randomized, placebo-controlled clinical trial of omega-55 478 3 as supplemental treatment in schizophrenia. Glob J Health Sci 2014;6:103-8. 479 doi:10.5539/gjhs.v6n7p103 56 480 Manteghiy A, Shakeri MT, Koohestani L, et al. Beneficial Antipsychotic Effects of 481 Omega-3 Fatty Acids Add-On Therapy for the Pharmacological Management of Patients With 482 Schizophrenia. Iran J Psychiatry Behav Sci 2008;2:35-40. 483 Bentsen H, Osnes K, Refsum H, et al. A randomized placebo-controlled trial of an 57 484 omega-3 fatty acid and vitamins E+C in schizophrenia. Transl Psychiatry 2013;3:e335. 485 doi:10.1038/tp.2013.110 486 58 Szeszko PR, McNamara RK, Gallego JA, et al. Longitudinal investigation of the 487 relationship between omega-3 polyunsaturated fatty acids and neuropsychological functioning in 488 recent-onset psychosis: A randomized clinical trial. Schizophrenia Research 2021;228:180-7. 489 doi:10.1016/j.schres.2020.11.050 490 59 Robinson DG, Gallego JA, John M, et al. A potential role for adjunctive omega-3 491 polyunsaturated fatty acids for depression and anxiety symptoms in recent onset psychosis: 492 Results from a 16 week randomized placebo-controlled trial for participants concurrently treated 493 with risperidone. Schizophr Res 2019;204:295–303. doi:10.1016/j.schres.2018.09.006 494 60 Pawełczyk T, Grancow-Grabka M, Kotlicka-Antczak M, et al. A randomized controlled 495 study of the efficacy of six-month supplementation with concentrated fish oil rich in omega-3 496 polyunsaturated fatty acids in first episode schizophrenia. Journal of Psychiatric Research 497 2016;73:34-44. doi:10.1016/j.jpsychires.2015.11.013 498 61 Emsley R, Niehaus DJH, Koen L, et al. The effects of eicosapentaenoic acid in tardive 499 dyskinesia: a randomized, placebo-controlled trial. Schizophr Res 2006;84:112-20. 500 doi:10.1016/j.schres.2006.03.023 Peet M, Brind J, Ramchand CN, et al. Two double-blind placebo-controlled pilot studies 501 62 502 of eicosapentaenoic acid in the treatment of schizophrenia. Schizophr Res 2001;49:243-51. 503 doi:10.1016/s0920-9964(00)00083-9 504 63 Fenton WS, Dickerson F, Boronow J, et al. A placebo-controlled trial of omega-3 fatty 505 acid (ethyl eicosapentaenoic acid) supplementation for residual symptoms and cognitive 506 impairment in schizophrenia. Am J Psychiatry 2001;158:2071-4. 507 doi:10.1176/appi.ajp.158.12.2071

508 64 Emsley R, Myburgh C, Oosthuizen P, et al. Randomized, placebo-controlled study of 509 ethyl-eicosapentaenoic acid as supplemental treatment in schizophrenia. Am J Psychiatry 510 2002;159:1596-8. doi:10.1176/appi.ajp.159.9.1596 511 65 Bošković M, Vovk T, Koprivšek J, et al. Vitamin E and essential polyunsaturated fatty 512 acids supplementation in schizophrenia patients treated with haloperidol. Nutr Neurosci 513 2016;19:156-61. doi:10.1179/1476830514Y.0000000139 514 66 Peet M, Horrobin DF, E-E Multicentre Study Group. A dose-ranging exploratory study of the effects of ethyl-eicosapentaenoate in patients with persistent schizophrenic symptoms. J 515 516 Psychiatr Res 2002;36:7-18. doi:10.1016/s0022-3956(01)00048-6 Berger GE, Proffitt T-M, McConchie M, et al. Ethyl-eicosapentaenoic acid in first-517 67 episode psychosis: a randomized, placebo-controlled trial. J Clin Psychiatry 2007;68:1867-75. 518 519 doi:10.4088/jcp.v68n1206 520 Nitta M, Kishimoto T, Müller N, et al. Adjunctive use of nonsteroidal anti-inflammatory 68 drugs for schizophrenia: a meta-analytic investigation of randomized controlled trials. Schizophr 521 522 Bull 2013;39:1230-41. doi:10.1093/schbul/sbt070 Sommer I, Griebler U, Kien C, et al. Vitamin D deficiency as a risk factor for dementia: a 523 69 524 systematic review and meta-analysis. BMC Geriatr 2017;17:16. doi:10.1186/s12877-016-0405-0 525 70 Weiser M, Zamora D, Levi L, et al. Adjunctive Aspirin vs Placebo in Patients With 526 Schizophrenia: Results of Two Randomized Controlled Trials. Schizophr Bull 2021;47:1077-87. 527 doi:10.1093/schbul/sbaa198 528 Laan W, Grobbee DE, Selten J-P, et al. Adjuvant aspirin therapy reduces symptoms of 71 529 schizophrenia spectrum disorders: results from a randomized, double-blind, placebo-controlled 530 trial. J Clin Psychiatry 2010;71:520-7. doi:10.4088/JCP.09m05117yel Attari A, Asefeh M, Sadat KSFA, et al. Aspirin Inclusion In Antipsychotic Treatment On 531 72 532 Severity Of Symptoms In Schizophrenia: A Randimized Clinical Trial. 2017;11:1-9. 533 Zheng W, Cai D-B, Yang X-H, et al. Adjunctive celecoxib for schizophrenia: A meta-534 analysis of randomized, double-blind, placebo-controlled trials. J Psychiatr Res 2017;92:139-46. 535 doi:10.1016/j.jpsychires.2017.04.004 Akhondzadeh S, Tabatabaee M, Amini H, et al. Celecoxib as adjunctive therapy in 536 74 schizophrenia: A double-blind, randomized and placebo-controlled trial. Schizophrenia Research 537 538 2007;90:179-85. doi:10.1016/j.schres.2006.11.016 539 Müller N, Krause D, Dehning S, et al. Celecoxib treatment in an early stage of 75 540 schizophrenia: Results of a randomized, double-blind, placebo-controlled trial of celecoxib 541 augmentation of amisulpride treatment. Schizophrenia Research 2010;121:118–24. 542 doi:10.1016/j.schres.2010.04.015 Müller N, Riedel M, Scheppach C, et al. Beneficial Antipsychotic Effects of Celecoxib 543 76 544 Add-On Therapy Compared to Risperidone Alone in Schizophrenia. AJP 2002;159:1029-34. 545 doi:10.1176/appi.ajp.159.6.1029 546 Rapaport MH, Delrahim KK, Bresee CJ, et al. Celecoxib Augmentation of Continuously 77 547 Ill Patients with Schizophrenia. *Biological Psychiatry* 2005;57:1594–6. 548 doi:10.1016/j.biopsych.2005.02.024 Rappard F, Müller N. Celecoxib add-on therapy does not have beneficial antipsychotic 549 78 550 effects over risperidone alone in schizophrenia. In: Neuropsychopharmacology. NATURE PUBLISHING GROUP MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, 551 552 ENGLAND 2004. S222-S222. 553 Chen DC, Zhang XY, Li YL, et al. Adjunctive celecoxib treatment with risperidone in 79 554 first-episode schizophrenia: A double blind, randomized and placebo controlled trial. China. Chin 555 J Psychiatry 2008;41:160–4. 556 80 Nie Y, Chen D, Zhang X, et al. Adjunctive celecoxib treatment with clozapine in chronic 557 refractory schizophrenia: a double blind, randomized and placebo controlled trial. Sichuan 558 Mental Health 2008. Begemann MJH, Dekker CF, van Lunenburg M, et al. Estrogen augmentation in 559 81 560 schizophrenia: a quantitative review of current evidence. Schizophr Res 2012;141:179-84. doi:10.1016/j.schres.2012.08.016 561 562 82 Kulkarni J, Gavrilidis E, Wang W, et al. Estradiol for treatment-resistant schizophrenia: a large-scale randomized-controlled trial in women of child-bearing age. Mol Psychiatry 563 564 2015;**20**:695–702. doi:10.1038/mp.2014.33 565 83 Weiser M, Levi L, Zamora D, et al. Effect of Adjunctive Estradiol on Schizophrenia 566 Among Women of Childbearing Age: A Randomized Clinical Trial. JAMA Psychiatry 567 2019;76:1009–17. doi:10.1001/jamapsychiatry.2019.1842

568 84 Louzã MR, Marques AP, Elkis H, et al. Conjugated estrogens as adjuvant therapy in the 569 treatment of acute schizophrenia: a double-blind study. Schizophr Res 2004;66:97-100. 570 doi:10.1016/S0920-9964(03)00082-3 Kulkarni J, Riedel A, de Castella AR, et al. Estrogen - a potential treatment for 571 85 schizophrenia. Schizophr Res 2001;48:137-44. doi:10.1016/s0920-9964(00)00088-8 572 573 Kulkarni J, de Castella A, Fitzgerald PB, et al. Estrogen in severe mental illness: a 86 574 potential new treatment approach. Arch Gen Psychiatry 2008;65:955-60. 575 doi:10.1001/archpsyc.65.8.955 87 576 Kulkarni J, de Castella A, Headey B, et al. Estrogens and men with schizophrenia: Is there a case for adjunctive therapy? Schizophrenia Research 2011;125:278-83. 577 doi:10.1016/j.schres.2010.10.009 578 Ko Y-H, Joe S-H, Cho W, et al. Effect of hormone replacement therapy on cognitive 579 88 580 function in women with chronic schizophrenia. Int J Psychiatry Clin Pract 2006;10:97–104. doi:10.1080/13651500500526235 581 582 89 Ghafari E, Fararouie M, Shirazi HG, et al. Combination of estrogen and antipsychotics in 583 the treatment of women with chronic schizophrenia: a double-blind, randomized, placebo-584 controlled clinical trial. Clin Schizophr Relat Psychoses 2013;6:172-6. 585 doi:10.3371/CSRP.GHFA.01062013 586 90 Akhondzadeh S, Nejatisafa AA, Amini H, et al. Adjunctive estrogen treatment in women with chronic schizophrenia: a double-blind, randomized, and placebo-controlled trial. Prog 587 588 Neuropsychopharmacol Biol Psychiatry 2003;27:1007–12. doi:10.1016/S0278-5846(03)00161-1 589 91 de Boer J, Prikken M, Lei WU, et al. The effect of raloxifene augmentation in men and 590 women with a schizophrenia spectrum disorder: a systematic review and meta-analysis. NPJ 591 Schizophr 2018;4:1. doi:10.1038/s41537-017-0043-3 592 92 Wang Q, Dong X, Wang Y, et al. Raloxifene as an adjunctive treatment for 593 postmenopausal women with schizophrenia: a meta-analysis of randomized controlled trials. 594 Arch Womens Ment Health 2018;21:31-41. doi:10.1007/s00737-017-0773-2 Zhu X-M, Zheng W, Li X-H, et al. Adjunctive raloxifene for postmenopausal women 595 93 with schizophrenia: A meta-analysis of randomized, double-blind, placebo-controlled trials. 596 Schizophr Res 2018;197:288-93. doi:10.1016/j.schres.2018.01.017 597 598 94 Khodaie-Ardakani M-R, Khosravi M, Zarinfard R, et al. A Placebo-Controlled Study of 599 Raloxifene Added to Risperidone in Men with Chronic Schizophrenia. 2015;:9. 600 95 Kianimehr G, Fatehi F, Hashempoor S, et al. Raloxifene adjunctive therapy for 601 postmenopausal women suffering from chronic schizophrenia: a randomized double-blind and placebo controlled trial. DARU J Pharm Sci 2014;22:55. doi:10.1186/2008-2231-22-55 602 603 Kulkarni J, Gavrilidis E, Gwini SM, et al. Effect of Adjunctive Raloxifene Therapy on 96 604 Severity of Refractory Schizophrenia in Women: A Randomized Clinical Trial. JAMA Psychiatry 2016;73:947. doi:10.1001/jamapsychiatry.2016.1383 605 606 97 Kulkarni J, Gurvich C, Lee SJ, et al. Piloting the effective therapeutic dose of adjunctive 607 selective estrogen receptor modulator treatment in postmenopausal women with schizophrenia. Psychoneuroendocrinology 2010;35:1142-7. doi:10.1016/j.psyneuen.2010.01.014 608 609 Usall J, Huerta-Ramos E, Labad J, et al. Raloxifene as an Adjunctive Treatment for 98 610 Postmenopausal Women With Schizophrenia: A 24-Week Double-Blind, Randomized, Parallel, Placebo-Controlled Trial. SCHBUL 2016;42:309-17. doi:10.1093/schbul/sbv149 611 612 99 Usall J, Huerta-Ramos E, Iniesta R, et al. Raloxifene as an Adjunctive Treatment for 613 Postmenopausal Women With Schizophrenia: A Double-Blind, Randomized, Placebo-Controlled 614 Trial. J Clin Psychiatry 2011;72:1552-7. doi:10.4088/JCP.10m06610 Weickert TW, Weinberg D, Lenroot R, et al. Adjunctive raloxifene treatment improves 615 100616 attention and memory in men and women with schizophrenia. Mol Psychiatry 2015;20:685-94. 617 doi:10.1038/mp.2015.11 618 Weiser M, Levi L, Burshtein S, et al. Raloxifene Plus Antipsychotics Versus Placebo Plus 101 Antipsychotics in Severely III Decompensated Postmenopausal Women With Schizophrenia or 619 620 Schizoaffective Disorder: A Randomized Controlled Trial. J Clin Psychiatry 2017;78:e758-65. 621 doi:10.4088/JCP.15m10498 622 102 Gurvich C, Hudaib A, Gavrilidis E, et al. Raloxifene as a treatment for cognition in women with schizophrenia: the influence of menopause status. Psychoneuroendocrinology 623 624 2019;100:113-9. doi:10.1016/j.psyneuen.2018.10.001 625 103 Huerta-Ramos E, Labad J, Cobo J, et al. Effects of raloxifene on cognition in 626 postmenopausal women with schizophrenia: a 24-week double-blind, randomized, parallel, 627 placebo-controlled trial. Eur Arch Psychiatry Clin Neurosci 2020;270:729-37.

doi:10.1007/s00406-019-01079-w 628 629 104 Vahdani B, Armani Kian A, Esmaeilzadeh A, et al. Adjunctive Raloxifene and Isradipine 630 Improve Cognitive Functioning in Patients With Schizophrenia: A Pilot Study. J Clin Psychopharmacol 2020;40:457-63. doi:10.1097/JCP.00000000001274 631 Samuni Y, Goldstein S, Dean OM, et al. The chemistry and biological activities of N-632 105 acetylcysteine. Biochimica et Biophysica Acta (BBA) - General Subjects 2013;1830:4117-29. 633 634 doi:10.1016/j.bbagen.2013.04.016 635 Marchi M, Galli G, Magarini FM, et al. Sarcosine as an add-on treatment to antipsychotic 106 636 medication for people with schizophrenia: a systematic review and meta-analysis of randomized controlled trials. Expert Opinion on Drug Metabolism & Toxicology 2021;17:483-93. 637 doi:10.1080/17425255.2021.1885648 638 639 107 Zheng W, Zhu X-M, Zhang Q-E, et al. Adjunctive minocycline for major mental disorders: A systematic review. J Psychopharmacol 2019;33:1215-26. 640 641 doi:10.1177/0269881119858286 642 108 Jones HJ, Borges MC, Carnegie R, et al. Associations between plasma fatty acid 643 concentrations and schizophrenia: a two-sample Mendelian randomisation study. Lancet Psychiatry 2021;8:1062-70. doi:10.1016/S2215-0366(21)00286-8 644 645 109 McLaverty A, Allott KA, Berger M, et al. Omega-3 fatty acids and neurocognitive ability in young people at ultra-high risk for psychosis. Early Interv Psychiatry 2021;15:874-81. 646 647 doi:10.1111/eip.13025 648 110 Benros ME, Mortensen PB. Role of Infection, Autoimmunity, Atopic Disorders, and the 649 Immune System in Schizophrenia: Evidence from Epidemiological and Genetic Studies. Curr Top Behav Neurosci 2020;44:141-59. doi:10.1007/7854_2019_93 650 651 Howes OD, McCutcheon R. Inflammation and the neural diathesis-stress hypothesis of 111 652 schizophrenia: a reconceptualization. Transl Psychiatry 2017;7:e1024. doi:10.1038/tp.2016.278 653 Müller N, Ulmschneider M, Scheppach C, et al. COX-2 inhibition as a treatment approach 112 654 in schizophrenia: Immunological considerations and clinical effects of celecoxib add-on therapy. European Archives of Psychiatry and Clinical Neuroscience 2004;254:14–22. 655 doi:10.1007/s00406-004-0478-1 656 Gerber AR, Bale TL. Antiinflammatory treatment ameliorates HPA stress axis 657 113 658 dysfunction in a mouse model of stress sensitivity. Endocrinology 2012;153:4830-7. doi:10.1210/en.2012-1601 659 660 114 Kumar JSD, Bai B, Zanderigo F, et al. In Vivo Brain Imaging, Biodistribution, and Radiation Dosimetry Estimation of [11C]Celecoxib, a COX-2 PET Ligand, in Nonhuman 661 Primates. Molecules 2018;23:1929. doi:10.3390/molecules23081929 662

- de Boer J, Prikken M, Lei WU, *et al.* The effect of raloxifene augmentation in men and
 women with a schizophrenia spectrum disorder: a systematic review and meta-analysis. *NPJ Schizophr* 2018;4:1. doi:10.1038/s41537-017-0043-3
- 666