Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Temporal dynamics of brain activation during a working memory task

Abstract

Working memory is responsible for the short-term storage and online manipulation of information necessary for higher cognitive functions, such as language, planning and problem-solving1,2. Traditionally, working memory has been divided into two types of processes: executive control (governing the encoding manipulation and retrieval of information in working memory) and active maintenance (keeping information available 'online'). It has also been proposed that these two types of processes may be subserved by distinct cortical structures, with the prefrontal cortex housing the executive control processes, and more posterior regions housing the content-specific buffers (for example verbal versus visuospatial) responsible for active maintenance3,4. However, studies in non-human primates suggest that dorsolateral regions of the prefrontal cortex may also be involved in active maintenance5–8. We have used functional magnetic resonance imaging to examine brain activation in human subjects during performance of a working memory task. We used the temporal resolution of this technique to examine the dynamics of regional activation, and to show that prefrontal cortex along with parietal cortex appears to play a role in active maintenance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Baddeley, A. D. Working Memory (Oxford Univ. Press, New York, 1986).

    Google Scholar 

  2. Shallice, T. From Neuropsychology to Mental Structure (Cambridge Univ. Press, Cambridge, 1988).

    Book  Google Scholar 

  3. Gathercole, S. E. Neuropsychology and working memory: a review. Neuropsychology 8, 494–505 (1994).

    Article  Google Scholar 

  4. Paulesu, E., Frith, C. D. & Frackowiak, R. S. J. The neural correlates of the verbal component of working memory. Nature 362, 342–345 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Fuster, J. M. & Alexander, G. E. Neuron activity related to short-term memory. Science 173, 652–654 (1971).

    Article  ADS  CAS  Google Scholar 

  6. Goldman-Rakic, P. S. in Handbook of Physiology: The Nervous System (eds Plum, E & Mountcastle, V.) 373–417 (American Physiological Society, Bethesda, Maryland, 1987).

    Google Scholar 

  7. Barone, P. & Joseph, J. P. Prefrontal cortex and spatial sequencing in macaque monkey. Exp. Brain Res. 78, 447–464 (1989).

    Article  CAS  Google Scholar 

  8. Miller, E. K., Erickson, C. A. & Desimone, R. Neural mechanisms of visual working memory in prefrontal cortex of the macaque. J. Neurosci. 16, 5154–5167 (1996).

    Article  CAS  Google Scholar 

  9. Cohen, J. D. et al. Activation of prefrontal cortex in a nonspatial working memory task with functional MRI. Hum. Brain Map. 1, 293–304 (1994).

    Article  CAS  Google Scholar 

  10. Smith, E. E., Jonides, J. & Koeppe, R. A. Dissociating verbal and spatial working memory using PET. Cereb. Cortex 6, 11–20 (1996).

    Article  CAS  Google Scholar 

  11. Braver, T. S. et al. A parametric study of prefrontal cortex involvement in human working memory. Neuroimage 6, 49–62 (1997).

    Article  Google Scholar 

  12. Savoy, R. L. et al. in Society of Magnetic Resonance, 3rd Meeting 450 (International Society of Magnetic Resonance in Medicine, Nice, 1995).

    Google Scholar 

  13. Vazquez, A. L. & Noll, D. C. Non-linear temporal aspects of the BOLD response in fMRI. Proc. Int. Soc. Magn. Res. Med. 4th Meet. 1765 (1996).

  14. Kwong, K. K. et al. Dynamic magnetic resonance of human brain activity during primary sensory stimulation. Proc. Nat. Acad. Sci. USA 89, 5675–5679 (1992).

    Article  ADS  CAS  Google Scholar 

  15. Tulving, E. et al. Neuroanatomical correlates of retrieval in episodic memory: auditory sentence recognition. Proc. Nat. Acad. Sci. USA 91, 2012–2015 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Fiez, J. A. et al. A positron emission tomography study of the short-term maintenance of verbal information. J. Neurosci. 16, 808–822 (1996).

    Article  CAS  Google Scholar 

  17. Courtney, S. M., Ungerleider, L. G. & Keil, K. & Haxby, J. V. Transient and sustained activity in a distributed neural system for human working memory. Nature (this issue).

  18. Jonides, J. et al. Verbal working memory load affects regional brain activity as measured by PET. J. Cogn. Neuroscience (in the press).

  19. Cohen, J. D., Braver, T. S. & O'Reilly, R. A computational approach to prefrontal cortex, cognitive control, and schizophrenia: recent developments and current challenges. Phil. Trans. R. Soc. Lond. B 351, 1515–1527 (1996).

    Article  CAS  Google Scholar 

  20. D'Esposito, M. et al. The neural basis of the central executive system of working memory. Nature 378, 279–281 (1995).

    Article  ADS  CAS  Google Scholar 

  21. Petrides, M. E. Functional specialization within the dorsolateral frontal cortex for serial order memory. Proc. R. Soc. Land. B. 246, 293–298 (1991).

    Article  ADS  CAS  Google Scholar 

  22. Barch, D. M. et al. Dissociating working memory from task difficulty in human prefrontal cortex. Neuropsychologia (in the press).

  23. Awh, E. et al. Dissociation of storage and rehearsal in verbal working memory: evidence from PET. Psychol. Sci. 7, 25–31 (1996).

    Article  Google Scholar 

  24. Waters, G., Rochon, E. & Caplan, D. The role of high-level speech planning in rehearsal: evidence from patients with apraxia of speech. J. Mem. Lang. 31, 54–73 (1992).

    Article  Google Scholar 

  25. Cohen, J. D., MacWhinney, B., Flatt, M. R. & Provost, J. PsyScope: a new graphic interactive environment for designing psychology experiments. Behav. Res. Meth. Instru. Comput. 25, 257–271 (1993).

    Article  Google Scholar 

  26. Ogawa, S. et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping using MRI. Proc. Nat. Acad. Sci. USA 89, 5951–5955 (1992).

    Article  ADS  CAS  Google Scholar 

  27. Noll, D. C., Cohen, J. D., Meyer, C. H. & Schneider, W. Spiral K-space MR imaging of cortical activation. J. Magn. Reson. Imag. 5, 49–56 (1995).

    Article  CAS  Google Scholar 

  28. Woods, R. P., Cherry, S. R. & Mazziotta, J. C. Rapid automated algorithm for aligning and reslicing PET images. J. Comp. Assist. Tomogr. 16, 620–633 (1992).

    Article  CAS  Google Scholar 

  29. Forman, S. D. et al. Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold. Mag. Reson. Med. 33, 636–647 (1995).

    Article  CAS  Google Scholar 

  30. Cox, R. W. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res. 29, 162–173 (1996).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, J., Perlstein, W., Braver, T. et al. Temporal dynamics of brain activation during a working memory task. Nature 386, 604–608 (1997). https://doi.org/10.1038/386604a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/386604a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing